Skip to main content

Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium (II) Tris-Heteroleptic Compounds or Natural Dyes

  • Chapter
  • First Online:
Nanoenergy

Abstract

The worldwide energy demand is growing and the development of sustainable power generation is a critical issue. Among several possibilities, dye-sensitized solar cells, DSSCs, have emerged as a promising device to meet the energy needs as an environmentally friendly alternative and investigation for academic and technological improvement of DSSCs are being carried out. One of the most important components of this device is the dye-sensitizer, since it is responsible for the sunlight harvesting and electron injection, the first steps of energy conversion. Herein, we review the developments on tris-heteroleptic ruthenium dye-sensitizers, which have been gaining much attention on the last years due to the possibility of modulating their photochemical and photophysical properties of the complex by using different ligands. Besides synthetic compounds, natural dyes have also been employed as semiconductor sensitizers for these devices and are also reviewed. These dyes can lower the device production costs since they can be promptly obtained from fruits or flowers in a very simple way. Among numerous classes of natural dyes, anthocyanins have been the most investigated ones and gained special attention in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook TR et al (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502

    Article  Google Scholar 

  2. Nocera DG (2009) Chemistry of personalized solar energy. Inorg Chem 48(21):10001–10017

    Article  Google Scholar 

  3. Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications. Chem Phys Chem 1(4):162–193

    Article  Google Scholar 

  4. Cameron D, Holliday R, Thompson D (2003) Gold’s future role in fuel cell systems. J Power Sour 118(1–2):298–303

    Article  Google Scholar 

  5. Lemos SG et al (2007) Electrocatalysis of methanol, ethanol and formic acid using a Ru/Pt metallic bilayer. J Power Sour 163(2):695–701

    Article  Google Scholar 

  6. Freitas RG et al (2007) Methanol oxidation reaction on Ti/RuO2(x)Pt(1-x) electrodes prepared by the polymeric precursor method. J Power Sour 171(2):373–380

    Article  MathSciNet  Google Scholar 

  7. Polo AS et al (2011) Pt-Ru-TiO2 photoelectrocatalysts for methanol oxidation. J Power Sour 196(2):872–876

    Article  Google Scholar 

  8. Gu C, Shannon C (2007) Investigation of the photocatalytic activity of TiO2-polyoxometalate systems for the oxidation of methanol. J Mol Catal A Chem 262(1–2):185–189

    Article  Google Scholar 

  9. Drew K et al. (2005) boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J Phys Chem B 109(24):11851–11857

    Google Scholar 

  10. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7):2834–2860

    Article  Google Scholar 

  11. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed Engl 46(1–2):52–66

    Article  Google Scholar 

  12. Meyer TJ (1989) Chemical approaches to artificial photosynthesis. Acc Chem Res 22(5):163–170

    Article  Google Scholar 

  13. Dubois DL (2009) Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc Chem Res 42(12):1974–1982

    Article  Google Scholar 

  14. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42(12):1983–1994

    Article  Google Scholar 

  15. Concepcion JJ et al (2009) Making oxygen with ruthenium complexes. Acc Chem Res 42(12):1954–1965

    Article  Google Scholar 

  16. Walter MG et al (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    Article  Google Scholar 

  17. Caramori S et al (2010) Photoelectrochemical behavior of sensitized TiO2 photoanodes in an aqueous environment: application to hydrogen production. Inorg Chem 49(7):3320–3328

    Article  Google Scholar 

  18. Koike K et al (2009) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: III: effects of length of alkyl chain connecting photosensitizer to catalyst. J Photochem Photobiol A Chem 207(1):109–114

    Article  Google Scholar 

  19. Takeda H et al (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium (i) complexes based on mechanistic studies. J Am Chem Soc 130(6):2023–2031

    Article  Google Scholar 

  20. Kroon JM et al (2007) Nanocrystalline dye-sensitized solar cells having maximum performance. Prog Photovolt Res Appl 15(1):1–18

    Article  MathSciNet  Google Scholar 

  21. Tributsch H (1972) Reaction of excited chlorophyll molecules at electrodes and in photosynthesis*. Photochem Photobiol 16(4):261–269

    Article  Google Scholar 

  22. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  23. Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  24. Katoh R et al (2004) Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coord Chem Rev 248(13–14):1195–1213

    Article  Google Scholar 

  25. Gregg BA (2004) Interfacial processes in the dye-sensitized solar cell. Coord Chem Rev 248(13–14):1215–1224

    Article  Google Scholar 

  26. Galoppini E (2004) Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord Chem Rev 248(13–14):1283–1297

    Article  Google Scholar 

  27. Anderson NA, Lian T (2004) Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coord Chem Rev 248(13–14):1231–1246

    Article  Google Scholar 

  28. Asbury JB et al (2003) Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film. J Phys Chem B 107(30):7376–7386

    Article  Google Scholar 

  29. Anderson NA, Ai X, Lian T (2003) Electron injection dynamics from Ru polypyridyl complexes to ZnO nanocrystalline thin films. J Phys Chem B 107(51):14414–14421

    Article  Google Scholar 

  30. Garcia CG et al (2002) Electron injection versus charge recombination in photoelectrochemical solar cells using cis-[(dcbH2)2Ru(CNpy)(H2O)]Cl2 as a nanocrystalline TiO2 sensitizer. J Photochem Photobiol A Chem 151(1–3):165–170

    Article  Google Scholar 

  31. Garcia CG et al (2002) Time-resolved experiments in dye-sensitized solar cells using [(dcbH2)2Ru(ppy)2](ClO4)2 as a nanocrystalline TiO2 sensitizer. J Photochem Photobiol A Chem 147(2):143–148

    Article  Google Scholar 

  32. Kuang DB et al (2006) High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J Am Chem Soc 128(12):4146–4154

    Article  MathSciNet  Google Scholar 

  33. Wang P et al (2004) Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv Mat 16(20)1806–1811

    Google Scholar 

  34. Wang P et al (2004) Amphiphilic polypyridyl ruthenium complexes with substituted 2,2 ‘-dipyridylamine ligands for nanocrystalline dye-sensitized solar cells. Chem Mater 16(17):3246–3251

    Article  Google Scholar 

  35. Pelet S, Moser J-E, Gratzel M (2000) Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2. J Phys Chem B 104(8):1791–1795

    Article  Google Scholar 

  36. Patrocinio AOT, Paterno LG, Iha NYM (2010) Role of polyelectrolyte for layer-by-layer compact TiO2 films in efficiency enhanced dye-sensitized solar cells. J Phys Chem C 114(41):17954–17959

    Article  Google Scholar 

  37. Murakami Iha NY, Garcia CG, Bignozzi CA (2003) Dye-sensitized photoelectrochemical solar cells. In: Nalwa HS (Ed.) Handbook of photochemistry and photobiology. American Scientific Publishers, Stevenson Ranch, p 49–82

    Google Scholar 

  38. Nazeeruddin MK et al (1993) Conversion of ligth to electricity by cis-X2bis(2,2′-Bipyridyl-4,4′-Dicarboxylate)Ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115(14):6382–6390

    Article  Google Scholar 

  39. Nazeeruddin MK, Gratzel M (2001) Separation of linkage isomers of trithiocyanato (4,4′,4″-tricarboxy-2,2′,6,2″-terpyridine)ruthenium(II) by pH-titration method and their application in nanocrystalline TiO2-based solar cells. J Photochem Photobiol A Chem 145(1–2):79–86

    Article  Google Scholar 

  40. Chen CY et al (2006) A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angew Chem Int Ed 45(35):5822–5825

    Article  Google Scholar 

  41. Cao YM et al (2009) Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(Hexylthio)thiophene conjugated bipyridine. J Phys Chem C 113(15):6290–6297

    Article  Google Scholar 

  42. Nazeeruddin MK et al (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987

    Article  Google Scholar 

  43. Lv XJ, Wang FF, Li YH (2010) Studies of an extremely high molar extinction coefficient ruthenium sensitizer in dye-sensitized solar cells. Acs Appl Mat Interfaces 2(7):1980–1986

    Article  Google Scholar 

  44. Gao F et al (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130(32):10720–10728

    Article  Google Scholar 

  45. Chen CY et al (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3(10):3103–3109

    Article  Google Scholar 

  46. Chen CY et al (2009) New ruthenium sensitizer with carbazole antennas for efficient and stable thin-film dye-sensitized solar cells. J Phys Chem C 113(48):20752–20757

    Article  Google Scholar 

  47. Yu QJ et al (2009) An extremely high molar extinction coefficient ruthenium sensitizer in dye-sensitized solar cells: the effects of pi-conjugation extension. J Phys Chem C 113(32):14559–14566

    Article  Google Scholar 

  48. Sun YL et al (2010) Viable alternative to N719 for dye-sensitized solar cells. ACS Appl Mater Interfaces 2(7):2039–2045

    Article  Google Scholar 

  49. Polo AS, Itokazu MK, Murakami Iha NY (2004) Metal complex sensitizers in dye-sensitized solar cells. Coord Chem Rev 248(13–14):1343–1361

    Google Scholar 

  50. Jin Zhengzhe et al (2008) Triarylamine-functionalized ruthenium dyes for efficient dye-sensitized solar cells. ChemSusChem 1(11):901–904

    Article  Google Scholar 

  51. Mitsopoulou CA et al (2007) Synthesis, characterization and sensitization properties of two novel mono and bis carboxyl-dipyrido-phenazine ruthenium(II) charge transfer complexes. J Photochem Photobiol A Chem 191:6–12

    Article  Google Scholar 

  52. Huang WK et al (2010) Synthesis and electron-transfer properties of benzimidazole-functionalized ruthenium complexes for highly efficient dye-sensitized solar cells. Chem Commun 46(47):8992–8994

    Article  Google Scholar 

  53. Wu SJ et al (2010) An efficient light-harvesting ruthenium dye for solar cell application. Dyes Pigm 84(1):95–101

    Article  Google Scholar 

  54. Abbotto A et al (2008) Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. Chem Commun 42:5318–5320

    Article  Google Scholar 

  55. Yum JH et al (2009) High efficient donor-acceptor ruthenium complex for dye-sensitized solar cell applications. Energy Environ Sci 2(1):100–102

    Article  MathSciNet  Google Scholar 

  56. Willinger K et al (2009) Synthesis, spectral, electrochemical and photovoltaic properties of novel heteroleptic polypyridyl ruthenium(II) donor-antenna dyes. J Mater Chem 19(30):5364–5376

    Article  Google Scholar 

  57. Wang P et al (2003) A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte (vol 2, pg 402, 2003). Nat Mater 2(7):498–498

    Google Scholar 

  58. Sahin C et al (2008) Synthesis of an amphiphilic ruthenium complex with swallow-tail bipyridyl ligand and its application in nc-DSC. Inorg Chim Acta 361(3):671–676

    Article  MathSciNet  Google Scholar 

  59. Nazeeruddin MK et al (2004) Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coord Chem Rev 248(13–14):1317–1328

    Article  Google Scholar 

  60. Klein C et al (2004) Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Inorg Chem 43(14):4216–4226

    Article  Google Scholar 

  61. Gao FF et al (2008) A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous Titania film for a high efficiency dye-sensitized solar cell. Chem Commun 23:2635–2637

    Article  Google Scholar 

  62. Giribabu L et al (2009) High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells. Energy Environ Sci 2(7):770–773

    Article  Google Scholar 

  63. Jiang KJ et al (2008) Efficient sensitization of nanocrystalline TiO2 films with highmolar extinction coefficient ruthenium complex. Inorg Chim Acta 361(3):783–785

    Article  Google Scholar 

  64. Gao FF et al (2009) Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells. Inorg Chem 48(6):2664–2669

    Article  Google Scholar 

  65. Chen CY et al. (2007) A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Adv Mat 19(22):3888–3891

    Google Scholar 

  66. Li J-Y et al (2010) Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells. J Mater Chem 20(34):7158–7164

    Article  Google Scholar 

  67. Zhu SS, Kingsborough RP, Swager TM (1999) Conducting redox polymers: investigations of polythiophene-Ru(bpy)(3)(n+) hybrid materials. J Mater Chem 9(9):2123–2131

    Article  Google Scholar 

  68. Hara K et al (2001) Dye-sensitized nanocrystalline TiO2 solar cells based on ruthenium(II) phenanthroline complex photosensitizers. Langmuir 17(19):5992–5999

    Article  Google Scholar 

  69. Reynal A et al (2008) A phenanthroline heteroleptic ruthenium complex and its application to dye-sensitised solar cells. Eur J Inorg Chem 12:1955–1958

    Article  Google Scholar 

  70. Onozawa-Komatsuzaki N et al (2006) Molecular and electronic ground and excited structures of heteroleptic ruthenium polypyridyl dyes for nanocrystalline TiO2 solar cells. New J Chem 30(5):689–697

    Article  Google Scholar 

  71. Smestad GP, Grätzel M (1998) Demonstrating electron transfer and nanotechnology: a natural dye-sensitised nanocrystalline energy converter. J Chem Educ 75(6):752–756

    Article  Google Scholar 

  72. Smestad GP (1998) Education and solar conversion: demonstrating electron transfer. Sol Energy Mater Sol Cells 55(1–2):157–178

    Google Scholar 

  73. Patrocinio AOT, Iha NYM (2010) Toward sustainability: solar cells sensitized by natural extracts. Quim Nova 33(3):574–578

    Article  Google Scholar 

  74. Zhang D et al. (2008) Betalin pigments for dye-sensitised solar cells. J Photochem Photobiol A Chem 195(1):72–80

    Google Scholar 

  75. Calogero G et al (2010) Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. Int J Mol Sci 11(1):254–267

    Article  Google Scholar 

  76. Nazeeruddin MK et al (2007) A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. J Photochem Photobiol A Chem 185(2–3):331–337

    Article  Google Scholar 

  77. Karthikeyan CS et al (2007) Highly efficient solid-state dye-sensitized TiO2 solar cells via control of retardation of recombination using novel donor-antenna dyes. Sol Energy Mater Sol Cells 91(5):432–439

    Article  Google Scholar 

  78. Ryu TI et al (2009) Synthesis and photovoltaic properties of novel ruthenium(ii) sensitizers for dye-sensitized solar cell applications. Bull Korean Chem Soc 30(10):2329–2337

    Article  Google Scholar 

  79. Furukawa S et al (2009) Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films 518(2):526–529

    Article  Google Scholar 

  80. Wongcharee K, Meeyoo V, Chavadej S (2007) Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol Energy Mater Sol Cells 91(7):566–571

    Article  Google Scholar 

  81. Luo PH et al (2009) From salmon pink to blue natural sensitizers for solar cells: Canna indica L., Salvia splendens, cowberry and Solanum nigrum L. Spectrochim Acta A Mol Biomol Spectrosc 74(4):936–942

    Article  Google Scholar 

  82. Fernando J, Senadeera GKR (2008) Natural anthocyanins as photosensitizers for dye-sensitized solar devices. Curr Sci 95(5):663–666

    Google Scholar 

  83. Hao SC et al (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80(2):209–214

    Article  Google Scholar 

  84. Jin EM et al. (2010) Photosensitization of nanoporous TiO2 films with natural dye. Physica Scripta T139

    Google Scholar 

  85. Calogero G, Di Marco G (2008) Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92(11):1341–1346

    Article  Google Scholar 

  86. Polo AS, Murakami Iha NY (2006) Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol Energy Mater Sol Cells 90(13):1936–1944

    Google Scholar 

  87. Zhang D et al (2008) Betalain pigments for dye-sensitized solar cells. J Photochem Photobiol A Chem 195(1):72–80

    Article  Google Scholar 

  88. Chang H, Lo YJ (2010) Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Sol Energy 84(10):1833–1837

    Article  Google Scholar 

  89. Gomez-Ortiz NM et al (2010) Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol Energy Mater Sol Cells 94(1):40–44

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge to CNPq (577256/2008-4), FAPESP (2011/11717-8) and UFABC for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Souza, J.d.S., de Andrade, L.O.M., Polo, A.S. (2013). Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium (II) Tris-Heteroleptic Compounds or Natural Dyes. In: de Souza, F., Leite, E. (eds) Nanoenergy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31736-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31736-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31735-4

  • Online ISBN: 978-3-642-31736-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics