Skip to main content

Oligonucleotide Therapeutics in Cancer

  • Chapter
  • First Online:

Part of the book series: Cancer Treatment and Research ((CTAR,volume 158))

Abstract

Alterations in pre-mRNA splicing can have profound effects on gene expression and lead to cellular transformation. Oligonucleotide therapeutics are drugs that manipulate gene expression and improve the disease state. Antisense oligonucleotides hybridize with a target mRNA to downregulate gene expression via an RNase H-dependent mechanism. Additionally, RNase H-independent splice switching oligonucleotides (SSO) modulate alternative or aberrant splicing, to favor the therapeutically relevant splicing product. This chapter summarizes the progress made in the application of these oligonucleotide drugs in the treatment of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References:

  1. Graveley BR (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17:100–107

    PubMed  CAS  Google Scholar 

  2. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302:2141–2144

    PubMed  CAS  Google Scholar 

  3. Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30:13–19

    PubMed  CAS  Google Scholar 

  4. Kalnina Z, Zayakin P, Silina K, Line A (2005) Alterations of pre-mRNA splicing in cancer. Genes Chromosomes Cancer 42:342–357

    PubMed  CAS  Google Scholar 

  5. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    PubMed  CAS  Google Scholar 

  6. Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A 90:8673–8677

    PubMed  CAS  Google Scholar 

  7. Suwanmanee T, Sierakowska H, Lacerra G, Svasti S, Kirby S, Walsh C, Fucharoen S, Kole R (2002) Restoration of human beta-globin gene expression in murine and human Ivs2-654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. Mol Pharmacol 62:545–553

    PubMed  CAS  Google Scholar 

  8. Svasti S, Suwanmanee T, Fucharoen S, Moulton HM, Nelson MH, Maeda N, Smithies O, Kole R (2009) RNA repair restores hemoglobin expression in IVS2-654 thalassemic mice. Proc Natl Acad Sci U S A 106:1205–1210

    PubMed  CAS  Google Scholar 

  9. Garcia-Blanco MA, Baraniak AP, Lasda EL (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22:535–546

    PubMed  CAS  Google Scholar 

  10. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419–437

    PubMed  CAS  Google Scholar 

  11. Pajares MJ, Ezponda T, Catena R, Calvo A, Pio R, Montuenga LM (2007) Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet Oncol 8:349–357

    PubMed  CAS  Google Scholar 

  12. Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398

    PubMed  CAS  Google Scholar 

  13. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298

    PubMed  CAS  Google Scholar 

  14. Spellman R, Rideau A, Matlin A, Gooding C, Robinson F, McGlincy N, Grellscheid SN, Southby J, Wollerton M, Smith CW (2005) Regulation of alternative splicing by PTB and associated factors. Biochem Soc Trans 33:457–460

    PubMed  CAS  Google Scholar 

  15. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESE finder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571

    PubMed  CAS  Google Scholar 

  16. Zhang XH, Heller KA, Hefter I, Leslie CS, Chasin LA (2003) Sequence information for the splicing of human pre-mRNA identified by support vector machine classification. Genome Res 13:2637–2650

    PubMed  CAS  Google Scholar 

  17. Fairbrother WG, Yeh RF, Sharp PA, Burge CB (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297:1007–1013

    PubMed  CAS  Google Scholar 

  18. Wang Y, Selvakumar M, Helfman D (1997) In: Krainer A (ed) Eukaryotic mRNA processing. Oxford University Press, New York, pp 242–278

    Google Scholar 

  19. Wang YC, Selvakumar M, Helfman D (1997) Alternative pre-mRNA splicing. In: Eukaryotic mRNA processing. Oxford University Press, New York, pp 242–279

    Google Scholar 

  20. Herbert A, Rich A (1999) RNA processing and the evolution of eukaryotes. Nat Genet 21:265–269

    PubMed  CAS  Google Scholar 

  21. Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF, Krainer AR (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24:1634–1644

    PubMed  CAS  Google Scholar 

  22. Donahue CP, Muratore C, Wu JY, Kosik KS, Wolfe MS (2006) Stabilization of the tau exon 10 stem loop alters pre-mRNA splicing. J Biol Chem 281:23302–23306

    PubMed  CAS  Google Scholar 

  23. Kalbfuss B, Mabon SA, Misteli T (2001) Correction of alternative splicing of tau in front temporal dementia and parkinsonism linked to chromosome 17. J Biol Chem 276:42986–42993

    PubMed  CAS  Google Scholar 

  24. Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J, Jadoon A, Bou-Gharios G, Partridge T (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102:198–203

    PubMed  CAS  Google Scholar 

  25. Goyenvalle A, Babbs A, Powell D, Kole R, Fletcher S, Wilton SD, Davies KE (2010) Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping. Mol Ther 18:198–205

    PubMed  CAS  Google Scholar 

  26. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P et al (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–928

    PubMed  CAS  Google Scholar 

  27. Crooke S (2001) Antisense drug technology. Marcel Dekker, New York

    Google Scholar 

  28. Sazani P, Kole R (2003) Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J Clin Invest 112:481–486

    PubMed  CAS  Google Scholar 

  29. Koch T, Orum H (2008) In: Crooke ST (ed) Antisense drug technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  30. Lee LK, Roth CM (2003) Antisense technology in molecular and cellular bioengineering. Curr Opin Biotechnol 14:505–511

    PubMed  CAS  Google Scholar 

  31. Friedrich I, Shir A, Klein S, Levitzki A (2004) RNA molecules as anti-cancer agents. Semin Cancer Biol 14:223–230

    PubMed  CAS  Google Scholar 

  32. Jason TL, Koropatnick J, Berg RW (2004) Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 201:66–83

    PubMed  CAS  Google Scholar 

  33. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    PubMed  CAS  Google Scholar 

  34. Pirollo KF, Rait A, Sleer LS, Chang EH (2003) Antisense therapeutics: from theory to clinical practice. Pharmacol Ther 99:55–77

    PubMed  CAS  Google Scholar 

  35. Stahel RA, Zangemeister-Wittke U (2003) Antisense oligonucleotides for cancer therapy-an overview. Lung Cancer 41(Suppl 1):S81–S88

    PubMed  Google Scholar 

  36. Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev Cancer 5:468–479

    PubMed  CAS  Google Scholar 

  37. Sazani P, GM, Kole R (2007) Antisense drug technology. CRC Press Taylor & Francis Group, Boca Raton, FL USA, pp 89–114

    Google Scholar 

  38. Orum H, Wengel J (2001) Locked nucleic acids: a promising molecular family for gene-function analysis and antisense drug development. Curr Opin Mol Ther 3:239–243

    PubMed  CAS  Google Scholar 

  39. Torigoe H, Hari Y, Sekiguchi M, Obika S, Imanishi T (2001) 2’-O,4′-C-methylene bridged nucleic acid modification promotes pyrimidine motif triplex DNA formation at physiological pH. Thermodynamic and kinetic studies. J Biol Chem 276:2354–2360

    PubMed  CAS  Google Scholar 

  40. Roberts J, Palma E, Sazani P, Orum H, Cho M, Kole R (2006) Efficient and persistent splice switching by systemically delivered Lna oligonucleotides in mice. Mol Ther 14:471–475

    PubMed  CAS  Google Scholar 

  41. Manoharan M (1999) 2′-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim Biophys Acta 1489:117–130

    PubMed  CAS  Google Scholar 

  42. Sazani P, Astriab-Fischer A, Kole R (2003) Effects of base modifications on antisense properties of 2′-O-methoxyethyl and PNA oligonucleotides. Antisense Nucleic Acid Drug Dev 13:119–128

    PubMed  CAS  Google Scholar 

  43. Zhang H, Cook J, Nickel J, Yu R, Stecker K, Myers K, Dean NM (2000) Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat Biotechnol 18:862–867

    PubMed  CAS  Google Scholar 

  44. Sazani P, Gemignani F, Kang SH, Maier MA, Manoharan M, Persmark M, Bortner D, Kole R (2002) Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat Biotechnol 20:1228–1233

    PubMed  CAS  Google Scholar 

  45. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, Lachmann RH, Gaudet D, Tan JL, Chasan-Taber S et al (2010) Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolemia: a randomized, double-blind, placebo-controlled trial. Lancet 375:998–1006

    PubMed  CAS  Google Scholar 

  46. Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158

    PubMed  CAS  Google Scholar 

  47. Hudziak RM, Summerton J, Weller DD, Iversen PL (2000) Antiproliferative effects of steric blocking phosphorodiamidate morpholino antisense agents directed against c-myc. Antisense Nucleic Acid Drug Dev 10:163–176

    PubMed  CAS  Google Scholar 

  48. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    PubMed  CAS  Google Scholar 

  49. Greenberg DE, Marshall-Batty KR, Brinster LR, Zarember KA, Shaw PA, Mellbye BL, Iversen PL, Holland SM, Geller BL (2010) Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J Infect Dis 201:1822–1830

    PubMed  CAS  Google Scholar 

  50. Mellbye BL, Weller DD, Hassinger JN, Reeves MD, Lovejoy CE, Iversen PL, Geller BL (2010) Cationic phosphorodiamidate morpholino oligomers efficiently prevent growth of Escherichia coli in vitro and in vivo. J Antimicrob Chemother 65:98–106

    PubMed  CAS  Google Scholar 

  51. Warren TK, Warfield KL, Wells J, Swenson DL, Donner KS, Van Tongeren SA, Garza NL, Dong L, Mourich DV, Crumley S et al (2010) Advanced antisense therapies for post exposure protection against lethal filovirus infections. Nat Med 16:991–994

    PubMed  CAS  Google Scholar 

  52. Sazani P, Kang SH, Maier MA, Wei C, Dillman J, Summerton J, Manoharan M, Kole R (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res 29:3965–3974

    PubMed  CAS  Google Scholar 

  53. Chen JK, Weith HL, Grewal RS, Wang G, Cushman M (1995) Synthesis of novel phosphoramidite reagents for the attachment of antisense oligonucleotides to various regions of the benzophenanthridine ring system. Bioconjug Chem 6:473–482

    PubMed  CAS  Google Scholar 

  54. Gee JE, Robbins I, van der Laan AC, van Boom JH, Colombier C, Leng M, Raible AM, Nelson JS, Lebleu B (1998) Assessment of high-affinity hybridization, RNase H cleavage, and covalent linkage in translation arrest by antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 8:103–111

    PubMed  CAS  Google Scholar 

  55. Gryaznov SM (1999) Oligonucleotide N3′–>P5′ phosphoramidates as potential therapeutic agents. Biochim Biophys Acta 1489:131–140

    PubMed  CAS  Google Scholar 

  56. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    PubMed  CAS  Google Scholar 

  57. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608

    PubMed  CAS  Google Scholar 

  58. Minn AJ, Boise LH, Thompson CB (1996) Bcl-x(S) antagonizes the protective effects of Bcl-x(L). J Biol Chem 271:6306–6312

    PubMed  CAS  Google Scholar 

  59. Lindenboim L, Borner C, Stein R (2001) Bcl-x(S) can form homodimers and heterodimers and its apoptotic activity requires localization of Bcl-x(S) to the mitochondria and its BH3 and loop domains. Cell Death Differ 8:933–942

    PubMed  CAS  Google Scholar 

  60. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    PubMed  CAS  Google Scholar 

  61. Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace AJ Jr (2000) An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 60:6101–6110

    PubMed  CAS  Google Scholar 

  62. Tu Y, Renner S, Xu F, Fleishman A, Taylor J, Weisz J, Vescio R, Rettig M, Berenson J, Krajewski S et al (1998) BCL-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res 58:256–262

    PubMed  CAS  Google Scholar 

  63. Reeve JG, Xiong J, Morgan J, Bleehen NM (1996) Expression of apoptosis-regulatory genes in lung tumour cell lines: relationship to p53 expression and relevance to acquired drug resistance. Br J Cancer 73:1193–1200

    PubMed  CAS  Google Scholar 

  64. Olopade OI, Adeyanju MO, Safa AR, Hagos F, Mick R, Thompson CB, Recant WM (1997) Overexpression of BCL-x protein in primary breast cancer is associated with high tumor grade and nodal metastases. Cancer J Sci Am 3:230–237

    PubMed  CAS  Google Scholar 

  65. Mercatante DR, Bortner CD, Cidlowski JA, Kole R (2001) Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. Analysis of apoptosis and cell death. J Biol Chem 276:16411–16417

    PubMed  CAS  Google Scholar 

  66. Watanabe J, Kushihata F, Honda K, Mominoki K, Matsuda S, Kobayashi N (2002) Bcl-xL overexpression in human hepatocellular carcinoma. Int J Oncol 21:515–519

    PubMed  CAS  Google Scholar 

  67. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

    PubMed  CAS  Google Scholar 

  68. Gilbert LA, Hemann MT (2010) DNA damage-mediated induction of a chemoresistant niche. Cell 143:355–366

    PubMed  CAS  Google Scholar 

  69. Mercatante DR, Mohler JL, Kole R (2002) Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J Biol Chem 277:49374–49382

    PubMed  CAS  Google Scholar 

  70. Bauman JA, Li SD, Yang A, Huang L, Kole R (2010) Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Res 38:8348–8356

    PubMed  CAS  Google Scholar 

  71. Olie RA, Hafner C, Kuttel R, Sigrist B, Willers J, Dummer R, Hall J, Stahel RA, Zangemeister-Wittke U (2002) Bcl-2 and bcl-xL antisense oligonucleotides induce apoptosis in melanoma cells of different clinical stages. J Invest Dermatol 118:505–512

    PubMed  CAS  Google Scholar 

  72. Guensberg P, Wacheck V, Lucas T, Monia B, Pehamberger H, Eichler HG, Jansen B (2002) Bcl-xL antisense oligonucleotides chemosensitize human glioblastoma cells. Chemotherapy 48:189–195

    PubMed  CAS  Google Scholar 

  73. Wacheck V, Selzer E, Gunsberg P, Lucas T, Meyer H, Thallinger C, Monia BP, Jansen B (2003) Bcl-x(L) antisense oligonucleotides radiosensitive colon cancer cells. Br J Cancer 89:1352–1357

    PubMed  CAS  Google Scholar 

  74. Taylor JK, Zhang QQ, Wyatt JR, Dean NM (1999) Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol 17:1097–1100

    PubMed  CAS  Google Scholar 

  75. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    PubMed  CAS  Google Scholar 

  76. Hsieh AC, Moasser MM (2007) Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer 97:453–457

    PubMed  CAS  Google Scholar 

  77. Wan J, Sazani P and Kole R (2009) Modification of HER2 pre-mRNA alternative splicing and its effects on breast cancer cells. Int J Cancer 124:772–777

    PubMed  CAS  Google Scholar 

  78. Vickers SM, Huang ZQ, MacMillan-Crow L, Greendorfer JS, Thompson JA (2002) Ligand activation of alternatively spliced fibroblast growth factor receptor-1 modulates pancreatic adenocarcinoma cell malignancy. J Gastrointest Surg 6:546–553

    PubMed  Google Scholar 

  79. Luqmani YA, Mortimer C, Yiangou C, Johnston CL, Bansal GS, Sinnett D, Law M, Coombes RC (1995) Expression of 2 variant forms of fibroblast growth factor receptor 1 in human breast. Int J Cancer 64:274–279

    PubMed  CAS  Google Scholar 

  80. Yamaguchi F, Saya H, Bruner JM, Morrison RS (1994) Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc Natl Acad Sci U S A 91:484–488

    PubMed  CAS  Google Scholar 

  81. Jin W, Huang ES, Bi W, Cote GJ (1999) Redundant intronic repressors function to inhibit fibroblast growth factor receptor-1 alpha-exon recognition in glioblastoma cells. J Biol Chem 274:28035–28041

    PubMed  CAS  Google Scholar 

  82. Bruno IG, Jin W, Cote GJ (2004) Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Hum Mol Genet 13:2409–2420

    PubMed  CAS  Google Scholar 

  83. Kastan MB, Lim DS (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1:179–186

    PubMed  CAS  Google Scholar 

  84. Gatti RA (1991) Localizing the genes for ataxia-telangiectasia: a human model for inherited cancer susceptibility. Adv Cancer Res 56:77–104

    PubMed  CAS  Google Scholar 

  85. Ahmed M, Rahman N (2006) ATM and breast cancer susceptibility. Oncogene 25:5906–5911

    PubMed  CAS  Google Scholar 

  86. Gilad S, Chessa L, Khosravi R, Russell P, Galanty Y, Piane M, Gatti RA, Jorgensen TJ, Shiloh Y, Bar-Shira A (1998) Genotype-phenotype relationships in ataxia-telangiectasia and variants. Am J Hum Genet 62:551–561

    PubMed  CAS  Google Scholar 

  87. Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA et al (1999) Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet 64:1617–1631

    PubMed  CAS  Google Scholar 

  88. Du L, Pollard JM, Gatti RA (2007) Correction of prototypic ATM splicing mutations and aberrant ATM function with antisense morpholino oligonucleotides. Proc Natl Acad Sci U S A 104:6007–6012

    PubMed  CAS  Google Scholar 

  89. Williams T, Kole R (2006) Analysis of prostate-specific membrane antigen splice variants in LNCap cells. Oligonucleotides 16:186–195

    PubMed  CAS  Google Scholar 

  90. Rajasekaran SA, Anilkumar G, Oshima E, Bowie JU, Liu H, Heston W, Bander NH, Rajasekaran AK (2003) A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol Biol Cell 14:4835–4845

    PubMed  CAS  Google Scholar 

  91. Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    PubMed  CAS  Google Scholar 

  92. Nakai K, Sakamoto H (1994) Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene 141:171–177

    PubMed  CAS  Google Scholar 

  93. Sanford JR, Ellis J, Caceres JF (2005) Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem Soc Trans 33:443–446

    PubMed  CAS  Google Scholar 

  94. Mazoyer S, Puget N, Perrin-Vidoz L, Lynch HT, Serova-Sinilnikova OM, Lenoir GM (1998) A BRCA1 nonsense mutation causes exon skipping. Am J Hum Genet 62:713–715

    PubMed  CAS  Google Scholar 

  95. Liu HX, Cartegni L, Zhang MQ, Krainer AR (2001) A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat Genet 27:55–58

    PubMed  CAS  Google Scholar 

  96. Cartegni L, Krainer AR (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Biol 10:120–125

    PubMed  CAS  Google Scholar 

  97. Wilusz JE, Devanney SC, Caputi M (2005) Chimeric peptide nucleic acid compounds modulate splicing of the bcl-x gene in vitro and in vivo. Nucleic Acids Res 33:6547–6554

    PubMed  CAS  Google Scholar 

  98. Villemaire J, Dion I, Elela SA, Chabot B (2003) Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides. J Biol Chem 278:50031–50039

    PubMed  CAS  Google Scholar 

  99. Patry C, Bouchard L, Labrecque P, Gendron D, Lemieux B, Toutant J, Lapointe E, Wellinger R, Chabot B (2003) Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res 63:7679–7688

    PubMed  CAS  Google Scholar 

  100. Swanton C, Nicke B, Downward J (2004) RNA interference, DNA methylation, and gene silencing: a bright future for cancer therapy? Lancet Oncol 5:653–654

    PubMed  CAS  Google Scholar 

  101. Downward J (2004) RNA interference. Bmj 328:1245–1248

    PubMed  CAS  Google Scholar 

  102. Lingel A, Izaurralde E (2004) RNAi: finding the elusive endonuclease. RNA 10:1675–1679

    PubMed  CAS  Google Scholar 

  103. Bagasra O, Prilliman KR (2004) RNA interference: the molecular immune system. J Mol Histol 35:545–553

    PubMed  CAS  Google Scholar 

  104. Scherer LJ, Rossi JJ (2003) Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21:1457–1465

    PubMed  CAS  Google Scholar 

  105. Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    PubMed  CAS  Google Scholar 

  106. Rand TA, Ginalski K, Grishin NV, Wang X (2004) Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A 101:14385–14389

    PubMed  CAS  Google Scholar 

  107. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity. J Am Coll Surg 198:953–959

    PubMed  Google Scholar 

  108. Duxbury MS, Matros E, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) Systemic siRNA-mediated gene silencing: a new approach to targeted therapy of cancer. Ann Surg 240:667–674 (discussion 666–675)

    PubMed  Google Scholar 

  109. Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H (2005) Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 65:967–971

    PubMed  CAS  Google Scholar 

  110. McCarthy BA, Mansour A, Lin YC, Kotenko S, Raveche E (2004) RNA interference of IL-10 in leukemic B-1 cells. Cancer Immun 4:6

    PubMed  Google Scholar 

  111. Iorns E, Lord CJ, Turner N, Ashworth A (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6:556–568

    PubMed  CAS  Google Scholar 

  112. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    PubMed  CAS  Google Scholar 

  113. Davis M (2009) The first targeted delivery of sirna in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6:659–668

    PubMed  CAS  Google Scholar 

  114. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    PubMed  CAS  Google Scholar 

  115. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    PubMed  CAS  Google Scholar 

  116. Taylor MF, Weller DD, Kobzik L (1998) Effect of TNF-alpha antisense oligomers on cytokine production by primary murine alveolar macrophages. Antisense Nucleic Acid Drug Dev 8:199–205

    PubMed  CAS  Google Scholar 

  117. Wang L, Gryaznov S, Nerenberg M (1999) Inhibition of IL-6 in mice by anti-NF-kappaB oligodeoxyribonucleotide N3′– > oligodeoxyribonnucleotide N3′ – > P5′ phosphoramidates. Inflammation 23:583–590

    PubMed  CAS  Google Scholar 

  118. Faria M, Spiller DG, Dubertret C, Nelson JS, White MR, Scherman D, Helene C, Giovannangeli C (2001) Phosphoramidate oligonucleotides as potent antisense molecules in cells and in vivo. Nat Biotechnol 19:40–44

    PubMed  CAS  Google Scholar 

  119. Skorski T, Perrotti D, Nieborowska-Skorska M, Gryaznov S, Calabretta B (1997) Antileukemia effect of c-myc N3′– > P5′ phosphoramidate antisense oligonucleotides in vivo. Proc Natl Acad Sci U S A 94:3966–3971

    PubMed  CAS  Google Scholar 

  120. Tafech A, Bassett T, Sparanese D, Lee CH (2006) Destroying RNA as a therapeutic approach. Curr Med Chem 13:863–881

    PubMed  CAS  Google Scholar 

  121. Kim R, Emi M, Matsuura K, Tanabe K (2007) Antisense and nonantisense effects of antisense Bcl-2 on multiple roles of Bcl-2 as a chemosensitizer in cancer therapy. Cancer Gene Ther 14:1–11

    PubMed  CAS  Google Scholar 

  122. Reed J (1995) Prevention of apoptosis as a mechanism of drug resistance. Hematol Oncol Clin North Am 9:451–473

    PubMed  CAS  Google Scholar 

  123. Coultas L, Strasser A (2003) The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 13:115–123

    PubMed  CAS  Google Scholar 

  124. Bedikian A, Millward M, Pehamberger H, Al E (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the oblimersen melanoma study group. J Clin Oncol 24:4738–4745

    PubMed  CAS  Google Scholar 

  125. O’Brien S, Moore J, Boyd T, Al E (2007) Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 25:1114–1120

    PubMed  Google Scholar 

  126. Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri A, Balasubramaniam A, Nair S, Oliushine V, Parfenov V et al (2009) Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 13:132–142

    Google Scholar 

  127. Hau P, Jachimczak P, Bogdahn U (2009) Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Rev Anticancer Ther 9:1663–1674

    PubMed  CAS  Google Scholar 

  128. Zellweger T, Miyake H, Cooper S, Al E (2001) Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2’-O-(2-methoxy)ethyl chemistry. J Pharmacol Exp Ther 298:934–940

    PubMed  CAS  Google Scholar 

  129. Chi KN, Hotte SJ, Yu EY, Tu D, Eigl BJ, Tannock I, Saad F, North S, Powers J, Gleave ME et al (2010) Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 28:4247–4254

    PubMed  CAS  Google Scholar 

  130. Chen J, Wu W, Tahir S, Al E (2000) Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-independent growth. Neoplasia 2:235–241

    PubMed  CAS  Google Scholar 

  131. Ambrosini G, Adida C, Altieri D (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    PubMed  CAS  Google Scholar 

  132. Kawasaki H, Altieri D, Lu C, Al E (1998) Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res 58:5071–5074

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Kole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wan, J., Bauman, J.A., Graziewicz, M.A., Sazani, P., Kole, R. (2013). Oligonucleotide Therapeutics in Cancer. In: Wu, J. (eds) RNA and Cancer. Cancer Treatment and Research, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31659-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31659-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31658-6

  • Online ISBN: 978-3-642-31659-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics