Skip to main content

One-Way Finite Automata with Quantum and Classical States

  • Chapter
Languages Alive

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7300))

Abstract

In this paper, we introduce and explore a new model of quantum finite automata (QFA). Namely, one-way finite automata with quantum and classical states (1QCFA), a one way version of two-way finite automata with quantum and classical states (2QCFA) introduced by Ambainis and Watrous in 2002 [3]. First, we prove that coin-tossing one-way probabilistic finite automata (coin-tossing 1PFA) [23] and one-way quantum finite automata with control language (1QFACL) [6] as well as several other models of QFA, can be simulated by 1QCFA. Afterwards, we explore several closure properties for the family of languages accepted by 1QCFA. Finally, the state complexity of 1QCFA is explored and the main succinctness result is derived. Namely, for any prime m and any ε1 > 0, there exists a language L m that cannot be recognized by any measure-many one-way quantum finite automata (MM-1QFA) [12] with bounded error \(\frac{7}{9}+\epsilon_1\), and any 1PFA recognizing it has at last m states, but L m can be recognized by a 1QCFA for any error bound ε > 0 with O(logm) quantum states and 12 classical states.

This work is supported in part by the National Natural Science Foundation of China (Nos. 60873055, 61073054,61100001), the Natural Science Foundation of Guangdong Province of China (No. 10251027501000004), the Fundamental Research Funds for the Central Universities (Nos. 10lgzd12,11lgpy36), the Research Foundation for the Doctoral Program of Higher School of Ministry of Education (Nos. 20100171110042, 20100171120051) of China, the Czech Ministry of Education (No. MSM0021622419), the China Postdoctoral Science Foundation project (Nos. 20090460808, 201003375), and the project of SQIG at IT, funded by FCT and EU FEDER projects projects QSec PTDC/EIA/67661/2006, AMDSC UTAustin/MAT/0057/2008, NoE Euro-NF, and IT Project QuantTel, FCT project PTDC/EEA-TEL/103402/2008 QuantPrivTel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thénrien, D.: Algebraic results on quantum automata. Theory Comput. Syst. 39, 165–188 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambainis, A., Freivalds, R.: One-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, pp. 332–341. IEEE Computer Society, Palo Alfo (1998)

    Google Scholar 

  3. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theoretical Computer Science 287, 299–311 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambainis, A., Nahimovs, N.: Improved constructions of quantum automata. Theoretical Computer Science 410, 1916–1922 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum automata. Journal of the ACM 49(4), 496–511 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertoni, A., Mereghetti, C., Palano, B.: Quantum Computing: 1-Way Quantum Automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Bertoni, A., Mereghetti, C., Palano, B.: Small size quantum automata recognizing some regular languages. Theoretical Computer Science 340, 394–407 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM Journal on Computing 31, 1456–1478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gruska, J.: Quantum Computing. McGraw-Hill, London (1999)

    MATH  Google Scholar 

  10. Gruska, J.: Descriptional complexity issues in quantum computing. J. Automata, Languages Combin. 5, 191–218 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addision-Wesley, New York (1979)

    MATH  Google Scholar 

  12. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proceedings of the 38th IEEE Annual Symposium on Foundations of Computer Science, pp. 66–75 (1997)

    Google Scholar 

  13. Le Gall, F.: Exponential separation of quantum and classical online space complexity. In: Proceedings of SPAA 2006, pp. 67–73 (2006)

    Google Scholar 

  14. Li, L.Z., Qiu, D.W.: Determining the equivalence for one-way quantum finite automata. Theoretical Computer Science 403, 42–51 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, L.Z., Qiu, D.W.: A note on quantum sequential machines. Theoretical Computer Science 410, 2529–2535 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, L.Z., Qiu, D.W., Zou, X.F., Li, L.J., Wu, L.H., Mateus, P.: Characterizations of one-way general quantum finite automata. Theoretical Computer Science 419, 73–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mereghetti, C., Palano, B.: Quantum finite automata with control language. RAIRO- Inf. Theor. Appl. 40, 315–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mereghetti, C., Palano, B., Pighizzini, G.: Note on the Succinctness of Deterministic, Nondeterministic, Probabilistic and Quantum Finite Automata. RAIRO-Inf. Theor. Appl. 5, 477–490 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Monras, A., Beige, A., Wiesner, K.: Hidden Quantum Markov Models and non-adaptive read-out of many-body states. ArXiv:1002.2337 (2010)

    Google Scholar 

  20. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoretical Computer Science 237, 275–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Paschen, K.: Quantum finite automata using ancilla qubits. Technical Report, University of Karlsruhe (2000)

    Google Scholar 

  23. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)

    MATH  Google Scholar 

  24. Qiu, D.W.: Some Observations on Two-Way Finite Automata with Quantum and Classical States. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 1–8. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Qiu, D.W., Li, L.Z., Mateus, P., Gruska, J.: Quantum Finite Automata. In: Wang, J. (ed.) Handbook of Finite State Based Models and Applications, pp. 113–144. CRC Press, Boca Raton (2012)

    Chapter  Google Scholar 

  26. Qiu, D.W., Mateus, P., Sernadas, A.: One-way quantum finite automata together with classical states. arXiv:0909.1428

    Google Scholar 

  27. Qiu, D.W., Yu, S.: Hierarchy and equivalence of multi-letter quantum finite automata. Theoretical Computer Science 410, 3006–3017 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yakaryilmaz, A., Cem Say, A.C.: Succinctness of two-way probabilistic and quantum finite automata. Discrete Mathematics and Theoretical Computer Science 12(4), 19–40 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Yakaryilmaz, A., Cem Say, A.C.: Unbounded-error quantum computation with small space bounds. Information and Computation 209, 873–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yakaryilmaz, A., Cem Say, A.C.: Languages recognized by nondeterministic quantum finite automata. Quantum Information and Computation 10(9-10), 747–770 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Yu, S.: Regular Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 41–110. Springer, Heidelberg (1998)

    Google Scholar 

  32. Zheng, S.G., Li, L.Z., Qiu, D.W.: Two-Tape Finite Automata with Quantum and Classical States. International Journal of Theoretical Physics 50, 1262–1281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng, S.G., Qiu, D.W., Li, L.Z.: Some languages recongnied by two-way finite automata with quantum and classical states. International Journal of Foundation of Computer Science. Also arXiv:1112.2844 (2011) (to appear)

    Google Scholar 

  34. Zheng, S.G., Qiu, D.W., Gruska, J., Li, L.Z., Mateus, P.: State succinctness of two-way finite automata with quantum and classical states. ArXiv:1202.2651 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zheng, S., Qiu, D., Li, L., Gruska, J. (2012). One-Way Finite Automata with Quantum and Classical States. In: Bordihn, H., Kutrib, M., Truthe, B. (eds) Languages Alive. Lecture Notes in Computer Science, vol 7300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31644-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31644-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31643-2

  • Online ISBN: 978-3-642-31644-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics