Skip to main content

Causal Graph Dynamics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7392))

Abstract

We extend the theory of Cellular Automata to arbitrary, time-varying graphs.

The full version of this paper is available as arXiv:1202.1098.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrighi, P., Dowek, G.: On the Completeness of Quantum Computation Models. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 21–30. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Arrighi, P., Fargetton, R., Nesme, V., Thierry, E.: Applying Causality Principles to the Axiomatization of Probabilistic Cellular Automata. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 1–10. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Arrighi, P., Nesme, V.: A simple block representation of Reversible Cellular Automata with time-simmetry. In: 17th International Workshop on Cellular Automata and Discrete Complex Systems, AUTOMATA 2011, Santiago de Chile (November 2011)

    Google Scholar 

  4. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. of Computer and Systems Sciences 77, 372–378 (2010); QIP 2010 (long talk)

    Article  MathSciNet  Google Scholar 

  5. Arrighi, P., Nesme, V., Werner, R.: One-Dimensional Quantum Cellular Automata over Finite, Unbounded Configurations. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 64–75. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a synchronization mechanism. Journal of Computer and System Sciences 34(2-3), 377–408 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavaliere, M., Csikasz-Nagy, A., Jordan, F.: Graph transformations and game theory: A generative mechanism for network formation. University of Trento, Technical Report CoSBI 25/2008 (2008)

    Google Scholar 

  8. Ceccherini-Silberstein, T., Coornaert, M.: Cellular automata and groups. Springer (2010)

    Google Scholar 

  9. Derbel, B., Mosbah, M., Gruner, S.: Mobile Agents Implementing Local Computations in Graphs. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 99–114. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Durand-Lose, J.: Representing reversible cellular automata with reversible block cellular automata. Discrete Mathematics and Theoretical Computer Science 145, 154 (2001)

    Google Scholar 

  11. Durr, C., Santha, M.: A decision procedure for unitary linear quantum cellular automata. In: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, pp. 38–45. IEEE (1996)

    Google Scholar 

  12. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph transformation. Springer-Verlag New York Inc. (2006)

    Google Scholar 

  13. Ehrig, H., Lowe, M.: Parallel and distributed derivations in the single-pushout approach. Theoretical Computer Science 109(1-2), 123–143 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13(3), 341–363 (2002)

    Article  MATH  Google Scholar 

  15. Giavitto, J.L., Spicher, A.: Topological rewriting and the geometrization of programming. Physica D: Nonlinear Phenomena 237(9), 1302–1314 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory 3, 320–375 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herrmann, F., Margenstern, M.: A universal cellular automaton in the hyperbolic plane. Theoretical Computer Science 296(2), 327–364 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kari, J.: Representation of reversible cellular automata with block permutations. Theory of Computing Systems 29(1), 47–61 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Klales, A., Cianci, D., Needell, Z., Meyer, D.A., Love, P.J.: Lattice gas simulations of dynamical geometry in two dimensions. Phys. Rev. E 82(4), 046705 (2010)

    Google Scholar 

  20. Kolmogorov, A.N., Uspensky, V.A.: On the definition of an algorithm. Uspekhi Matematicheskikh Nauk 13(4), 3–28 (1958)

    MathSciNet  MATH  Google Scholar 

  21. Konopka, T., Markopoulou, F., Smolin, L.: Quantum graphity. Arxiv preprint hep-th/0611197 (2006)

    Google Scholar 

  22. Kozma, B., Barrat, A.: Consensus formation on adaptive networks. Phys. Rev. E 77, 016102 (2008)

    Google Scholar 

  23. Kreowski, H.-J., Kuske, S.: Autonomous Units and Their Semantics - The Parallel Case. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 56–73. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Kurth, W., Kniemeyer, O., Buck-Sorlin, G.: Relational Growth Grammars – A Graph Rewriting Approach to Dynamical Systems with a Dynamical Structure. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 56–72. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Lathrop, J.I., Lutz, J.H., Patterson, B.: Multi-Resolution Cellular Automata for Real Computation. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 181–190. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical Computer Science 109(1-2), 181–224 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murray, J.D.: Mathematical biology. ii: Spatial models and biomedical applications. In: Biomathematics, 3rd edn., vol. 18, Springer (2003)

    Google Scholar 

  28. Papazian, C., Rémila, É.: Hyperbolic Recognition by Graph Automata. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 330–342. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Róka, Z.: Simulations between cellular automata on Cayley graphs. Theoretical Computer Science 225(1-2), 81–111 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rozenberg, G.: Handbook of graph grammars and computing by graph transformation: Foundations, vol. 1. World Scientific (2003)

    Google Scholar 

  31. Sayama, H.: Generative network automata: A generalized framework for modeling complex dynamical systems with autonomously varying topologies. In: IEEE Symposium on Artificial Life, ALIFE 2007, pp. 214–221. IEEE (2007)

    Google Scholar 

  32. Scherrer, A., Borgnat, P., Fleury, E., Guillaume, J.-L., Robardet, C.: Description and simulation of dynamic mobility networks. Computer Networks 52(15), 2842–2858 (2008)

    Article  MATH  Google Scholar 

  33. Schönhage, A.: Storage modification machines. SIAM Journal on Computing 9, 490 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schumacher, B., Werner, R.: Reversible quantum cellular automata. ArXiv pre-print quant-ph/0405174 (2004)

    Google Scholar 

  35. Sieg, W.: Church without dogma: Axioms for computability. In: New Computational Paradigms, pp. 139–152 (2008)

    Google Scholar 

  36. Sorkin, R.: Time-evolution problem in Regge calculus. Phys. Rev. D 12(2), 385–396 (1975)

    Article  MathSciNet  Google Scholar 

  37. Taentzer, G.: Parallel and distributed graph transformation: Formal description and application to communication-based systems. PhD thesis, Technische Universitat Berlin (1996)

    Google Scholar 

  38. Taentzer, G.: Parallel high-level replacement systems. Theoretical Computer Science 186(1-2), 43–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tomita, K., Murata, S., Kamimura, A., Kurokawa, H.: Self-description for Construction and Execution in Graph Rewriting Automata. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 705–715. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  40. Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of self-reproduction. Physica D: Nonlinear Phenomena 171(4), 197–210 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tomita, K., Kurokawa, H., Murata, S.: Graph-rewriting automata as a natural extension of cellular automata. In: Gross, T., Sayama, H. (eds.) Adaptive Networks. Understanding Complex Systems, vol. 51, pp. 291–309. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  42. Tomita, K., Murata, S., Kurokawa, H.: Asynchronous Graph-Rewriting Automata and Simulation of Synchronous Execution. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 865–875. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  43. von Mammen, S., Phillips, D., Davison, T., Jacob, C.: A Graph-Based Developmental Swarm Representation and Algorithm. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 1–12. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arrighi, P., Dowek, G. (2012). Causal Graph Dynamics. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31585-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31585-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31584-8

  • Online ISBN: 978-3-642-31585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics