Skip to main content

Polyploidy in Legumes

  • Chapter
  • First Online:

Abstract

Legumes are the third largest family of flowering plants, with over 700 genera and more than 19,000 species. Genomic evidence has shown that a whole-genome duplication (WGD) occurred shortly after the origin of the family, in an ancestor that gave rise to the papilionoids, the clade that comprises 65 % of the genera and 71 % of the species, including nearly all of the economically important crop legumes. This polyploidy event may have been associated with the origin of nitrogen-fixing symbiosis (nodulation) in the papilionoids. Nodulation most likely evolved independently in other legumes outside the papilionoids, hence there appears to be no requirement for polyploidy in the evolution of this important symbiosis. More recent polyploidy, as inferred from chromosome counts, occurs in approximately a quarter of all legume genera for which data are available. In most cases, polyploidy is confined to individual genera, species within genera, or cytotypes within species. An exception is the core clade of the genistoid legumes, a major papilionoid group that includes lupines (Lupinus). This group is probably fundamentally polyploid and also has a propensity for further polyploidy and aneuploidy in many of its genera. The frequency of polyploidy varies considerably among clades of the family, being most common (outside the genistoids) in the largely temperate, herbaceous Hologalegina (including pea and clover), and low in woody tropical groups such as the caesalpinioids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahangarian S, Osaloo SK, Maassoumi AA (2007) Molecular phylogeny of the tribe Hedysareae with special reference to Onobrychis (Fabaceae) as inferred from nrDNA ITS sequences. Iran J Bot 13:64–74

    Google Scholar 

  • Ainouche A, Bayer RJ, Misset M- (2004) Molecular phylogeny, diversification and character evolution in Lupinus (Fabaceae) with special attention to Mediterranean and African lupines. Plant Syst Evol 246:211–222

    Article  CAS  Google Scholar 

  • Artyukova EV, Kozyrenko MM, Kholina AB, Zhuravlev YN (2011) High chloroplast haplotype diversity in the endemic legume Oxytropis chankaensis may result from independent polyploidization events. Genetica 139:221–232

    Article  CAS  PubMed  Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97:296–313

    Google Scholar 

  • Bello MA, Bruneau A, Forest F, Hawkins JA (2009) Elusive relationships within order Fabales: phylogenetic analyses using matK and rbcL sequence data. Syst Bot 34:102–114

    Article  Google Scholar 

  • Bertioli D, Moretzsohn M, Madsen L, Sandal N, Leal-Bertioli S, Guimaraes P, Hougaard B, Fredslund J, Schauser L, Nielsen A, Sato S, Tabata S, Cannon S, Stougaard J (2009) An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10:45

    Article  PubMed  CAS  Google Scholar 

  • Bessega C, Vilardi JC, Saidman BO (2006) Genetic relationships among American species of the genus Prosopis (Mimosoideae, Leguminosae) inferred from ITS sequences: evidence for long-distance dispersal. J Biogeogr 33:1905–1915

    Article  Google Scholar 

  • Bingham ET (1972) Sexual poly ploidy in Medicago-Sativa-D. Genetics 71:S5

    Google Scholar 

  • Bisby FA (1981) Genisteae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 409–425

    Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  PubMed  Google Scholar 

  • Boatwright JS, Van Wyk B- (2011) The systematic position of Sophora inhambanensis (Fabaceae: Sophoreae). S Afr J Bot 77:249–250

    Article  Google Scholar 

  • Boatwright JS, Savolainen V, Van Wyk B, Schutte-Vlok AL, Forest F, van der Bank M (2008) Systematic position of the anomalous genus Cadia and the phylogeny of the tribe Podalyrieae (Fabaceae). Syst Bot 33:133–147

    Article  Google Scholar 

  • Boff T, Schifino-Wittmann MT (2003) Segmental allopolyploidy and paleopolyploidy in species of Leucaena Benth: evidence from meiotic behaviour analysis. Hereditas (Lund) 138:27–35

    Article  Google Scholar 

  • Brown GK, Clowes C, Murphy DJ, Ladiges PY (2010) Phylogenetic analysis based on nuclear DNA and morphology defines a clade of eastern Australian species of Acacia s.s. (section Juliflorae): the ‘Acacia longifolia group’. Aust Syst Bot 23:162–172

    Article  Google Scholar 

  • Bruneau A, Mercure M, Lewis GP, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany-Botanique 86:697–718

    Article  CAS  Google Scholar 

  • Burow MD, Simpson CE, Faries MW, Starr JL, Paterson AH (2009) Molecular biogeographic study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome 52:107–119

    Article  CAS  PubMed  Google Scholar 

  • Calderini O, Mariani A (1997) Increasing 2n gamete production in diploid alfalfa by cycles of phenotypic recurrent selection. Euphytica 93:113–118

    Article  Google Scholar 

  • Cannon SB, Ilut D, Farmer AD, Maki SL, May GD, Singer SR, Doyle JJ (2010) Polyploidy did not predate the evolution of nodulation in all legumes. PLoS ONE 5:e11630

    Article  PubMed  CAS  Google Scholar 

  • Catalano SA, Vilardi JC, Tosto D, Saidman BO (2008) Molecular phylogeny and diversification history of Prosopis (Fabaceae: Mimosoideae). Biol J Linn Soc 93:621–640

    Article  Google Scholar 

  • Chandler GT, Bayer RJ, Crisp MD (2001) A molecular phylogeny of the endemic Australian genus Gastrolobium (Fabaceae: Mirbelieae) and allied genera using chloroplast and nuclear markers. Am J Bot 88:1675–1687

    Article  CAS  PubMed  Google Scholar 

  • Choi B, Kim J (1997) ITS sequences and speciation on far eastern Indigofera (Leguminosae). J Plant Res 110:339–346

    Article  CAS  Google Scholar 

  • Chooi WY (1971) Variation in nuclear DNA content in the genus Vicia-D. Genetics 68:195–211

    CAS  PubMed  Google Scholar 

  • Coate JE, Doyle JJ (2010) Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid. Genome Biol Evol 2:534–546

    Article  PubMed  CAS  Google Scholar 

  • Conterato IF, Schifino-Wittmann MT (2006) New chromosome numbers, meiotic behaviour and pollen fertility in American taxa of Lupinus (Leguminosae): contributions to taxonomic and evolutionary studies. Bot J Linn Soc 150:229–240

    Article  Google Scholar 

  • Cowan RS, Polhill RM (1981) Amherstieae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 135–142

    Google Scholar 

  • Cubas P, Pardo C, Tahiri H (2002) Molecular approach to the phylogeny and systematics of cytisus (Leguminosae) and related genera based on nucleotide sequences of nrDNA (ITS region) and cpDNA (trnL-trnF intergenic spacer). Plant Syst Evol 233:223–242

    Article  CAS  Google Scholar 

  • Cusma-Velari T, Feoli-Chiapella L (2009) The so-called primitive genera of Genisteae (Fabaceae): systematic and phyletic considerations based on karyological data. Bot J Linn Soc 160:232–248

    Article  Google Scholar 

  • Dahmer N, Simon MF, Schifino-Wittmann MT, Hughes CE, Sfoggia Miotto ST, Giuliani JC (2011) Chromosome numbers in the genus Mimosa L.: cytotaxonomic and evolutionary implications. Plant Syst Evol 291:211–220

    Article  Google Scholar 

  • Degtjareva GV, Kramina TE, Sokoloff DD, Samigullin TH, Valiejo-Roman CM, Antonov AS (2006) Phylogeny of the genus Lotus (Leguminosae, Loteae): evidence from nrITS sequences and morphology. Can J Bot 84:813–830

    Article  Google Scholar 

  • Doyle JJ (2011) Phylogenetic perspectives on the origins of nodulation. Molec Plant Microbe Interact 24:1289–1295

    Article  CAS  Google Scholar 

  • Doyle JL, Rauscher JT, Brown AHD (2004) Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans (Glycine …. New Phytologist)

    Google Scholar 

  • Doyle JJ, Egan AN (2010) Dating the origins of polyploidy events. New Phytol 186:73–85

    Article  PubMed  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, Harbison C (2003) Chloroplast-expressed glutamine synthetase in Glycine and related Leguminosae: phylogeny, gene duplication, and ancient polyploidy. Syst Bot 28:567–577

    Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol (Rockville) 131:900–910

    Article  CAS  Google Scholar 

  • Drummond CS (2008) Diversification of Lupinus (Leguminosae) in the western new world: derived evolution of perennial life history and colonization of montane habitats. Mol Phylogenet Evol 48:408–421

    Article  PubMed  Google Scholar 

  • Drummond CS, Eastwood RJ, Miotto STS, Hughes CE (2012) Multiple continental radiations and correlates of diversification in lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol 61:443–460

    Article  PubMed  Google Scholar 

  • Egan AN, Doyle J (2010) A comparison of global, gene-specific, and relaxed clock methods in a comparative genomics framework: dating the polyploid history of soybean (Glycine max). Syst Biol 59:534–547

    Article  CAS  PubMed  Google Scholar 

  • Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium––Leguminosae). Mol Phylogenet Evol 39:688–705

    Article  CAS  PubMed  Google Scholar 

  • Endo Y, Choi B, Ohashi H, Delgado-Salinas A (2008) Phylogenetic relationships of New World Vicia (Leguminosae) inferred from nrDNA internal transcribed spacer sequences and floral characters. Syst Bot 33:356–363

    Article  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the cretaceous-tertiary extinction event. Proc Natl Acad Sci U S A 106:5737–5742

    Article  CAS  PubMed  Google Scholar 

  • Frahm-Leliveld JA (1966) Cytotaxonomic notes on the genera Indigofera L. and Cyamopsis DC. [Leguminosae]. Genetica 37:403–426

    Article  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    Article  CAS  PubMed  Google Scholar 

  • Gallagher RV, Leishman MR, Miller JT, Hui C, Richardson DM, Suda J, Travnicek P (2011) Invasiveness in introduced Australian Acacias: the role of species traits and geneome size. Divers Distrib 17:884–897

    Article  Google Scholar 

  • Gauthier P, Lumaret R, Bedecarrats A (1998a) Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (D.C.) Schleicher/L. corniculatus L.). I. Insights from morphological and allozyme markers. Heredity 80:683–693

    Article  CAS  Google Scholar 

  • Gauthier P, Lumaret R, Bedecarrats A (1998b) Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (D.C.) Schleicher/L. corniculatus L.). II. Insights from RFLP of chloroplast DNA. Heredity 80:694–701

    Article  CAS  Google Scholar 

  • Gill LS, Husaini (1986) Cytological observations in Leguminosae from southern Nigeria. Willdenowia 15:521–527

    Google Scholar 

  • Gill N, Findley S, Walling JG, Hans C, Ma J, Doyle J, Stacey G, Jackson SA (2009) Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 151:1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Gohil RN, Ashraf M (2008) Cytological parameters viz a viz probable modes of evolution in Astragalus L. Proc Nat Acad Sci India Sect B-Biol Sci 78:281–287

    Google Scholar 

  • Goldblatt P (1989) Miscellaneous chromosome counts in Asteraceae Bignoniaceae Proteaceae and Fabaceae. Ann Mo Bot Gard 76:1186–1188

    Article  Google Scholar 

  • Goldblatt P (1981) Cytology and the phylogeny of leguminosae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 2. Royal Botanic Gardens, Kew, pp 427–464

    Google Scholar 

  • Govindarajulu R, Hughes CE, Bailey D (2011a) Phylogenetic and population genetic analyses of diploid Leucaena (Leguminosae-Mimosoideae) reveal cryptic species diversity and patterns of divergent allopatric speciation. Am J Bot 98:2049–2063

    Article  PubMed  Google Scholar 

  • Govindarajulu R, Hughes CE, Alexander P, Bailey D (2011b) The complex dynamics of ancient and recent polyploidy in Leucaena (Leguminosae). Am J Bot 98:2064–2076

    Article  PubMed  Google Scholar 

  • Grant WF, Small E (1996) The origin of the Lotus corniculatus (Fabaceae) complex: a synthesis of diverse evidence. Can J Bot 74:975–989

    Article  Google Scholar 

  • Gutierrez JF, Vaquero F, Vences FJ (1994) Allopolyploid vs. autopolyploid origins in the genus Lathyrus (Leguminosae). Heredity 73:29–40

    Article  Google Scholar 

  • Hanson L (1995) Some new chromosome counts in the genus Inga (Leguminosae: Mimosoideae). Kew Bull 50:801–804

    Article  Google Scholar 

  • Havananda T, Brummer EC, Maureira-Butler IJ, Doyle JJ (2010) Relationships among diploid members of the Medicago sativa (Fabaceae) species complex based on chloroplast and mitochondrial DNA sequences. Syst Bot 35:140–150

    Article  Google Scholar 

  • Havananda T, Brummer EC, Doyle JJ (2011) Complex patterns of autopolyploid evolution in alfalfa and allies (Medicago sativa: Leguminosae). Am J Bot 98:1633-1646

    Article  PubMed  Google Scholar 

  • Hejazi H, Mohsen S, Nasab MZ (2010) Cytotaxonomy of some Onobrychis (Fabaceae) species and populations in Iran. Caryologia 63:18–31

    Google Scholar 

  • Hughes CE, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci U S A 103:10334–10339

    Article  CAS  PubMed  Google Scholar 

  • Hughes CE, Govindarajulu R, Robertson A, Filer DL, Harris SA, Bailey CD (2007) Serendipitous backyard hybridization and the origin of crops. Proc Natl Acad Sci U S A 104:14389–14394

    Article  CAS  PubMed  Google Scholar 

  • Hughes CE, Bailey CD, Harris SA (2002) Divergent and reticulate species relationships in Leucaena (Fabaceae) inferred from multiple data sources: insights into polyploid origins and nrDNA polymorphism. Am J Bot 89:1057–1073

    Article  CAS  PubMed  Google Scholar 

  • Hughes CE, Bailey CD, Krosnick S, Luckow MA (2003) Relationships among genera of the informal Dichrostachys and Leucaena groups (Mimosoideae) inferred from nuclear ribosomal ITS sequences. In: Klitgaard B, Bruneau A (eds) Advances in legume systematics, Part 1.0. Royal Botanic Gardens, Kew, pp 221–238

    Google Scholar 

  • Hulina N (2010) “Planta hortifuga” in flora of the continental part of Croatia. Agriculturae Conspectus Scientificus 75:57–65

    Google Scholar 

  • Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, Farmer A, Doyle JJ (2012) A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-Seq in plant species. Am J Bot 99:383–396

    Article  CAS  PubMed  Google Scholar 

  • Innes RW, Ameline-Torregrosa C, Ashfield T, Cannon E, Cannon SB, Chacko B, Chen NWG, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Hans CS, Howell S, Ilut D, Jackson S, Lai H, Mammadov J, del Campo SM, Metcalf M, Nguyen A, O’Bleness M, Pfeil BE, Podicheti R, Ratnaparkhe MB, Samain S, Sanders I, Segurens B, Sevignac M, Sherman-Broyles S, Thareau V, Tucker DM, Walling J, Wawrzynski A, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MAS, Young ND (2008) Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Plant Physiol (Rockville) 148:1740–1759

    Article  CAS  Google Scholar 

  • Jaillon O, Aury J, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon A, Weissenbach J, Quetier F, Wincker P, French-Italian Public (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature (London) 449:463

    Article  CAS  Google Scholar 

  • Jenczewski E, Prosperi J, Ronfort J (1999) Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits. Am J Bot 86:677–687

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  CAS  PubMed  Google Scholar 

  • Joly S, Bruneau A (2004) Evolution of triploidy in Apios americana (Leguminosae) revealed by genealogical analysis of the histone H3-D gene. Evolution 58:284–295

    CAS  PubMed  Google Scholar 

  • Jorgensen JL, Stehlik I, Brochmann C, Conti E (2003) Implications of ITS sequences and RAPD markers for the taxonomy and biogeography of the Oxytropis campestris and O. arctica (Fabaceae) complexes in Alaska. Am J Bot 90:1470–1480

    Article  CAS  PubMed  Google Scholar 

  • Kajita T, Ohashi H, Tateishi Y, Bailey CD, Doyle JJ (2001) rbcL and legume phylogeny, with particular reference to phaseoleae, millettieae, and allies. Syst Bot 26:515–536

    Google Scholar 

  • Kloda JM, Dean PDG, Maddren C, MacDonald DW, Mayes S (2008) Using principle component analysis to compare genetic diversity across polyploidy levels within plant complexes: an example from British Restharrows (Ononis spinosa and Ononis repens). Heredity 100:253–260

    Article  CAS  PubMed  Google Scholar 

  • Kumar PS, Hymowitz T (1989) Where are the diploid 2n equals 2x equals 20 genome donors of glycine willd. Leguminosae Papilionoideae. Euphytica 40:221–226

    Google Scholar 

  • Kumari S, Bir SS (1990) Karyomorphological evolution in Papilionaceae. J Cytol Genet 25:173–219

    Google Scholar 

  • Kupicha FK (1981) Vicieae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 377–381

    Google Scholar 

  • Lackey JA (1981) Phaseoleae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 301–328

    Google Scholar 

  • Lavia GI, Ortiz MA, Robledo G, Fernandez A, Seijo G (2011) Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour. Ann Bot (London) 108:103–111

    Article  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:575–594

    Article  PubMed  Google Scholar 

  • Lavin M, Pennington RT, Klitgaard BB, Sprent JI, de Lima HC, Gasson PE (2001) The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Am J Bot 88:503–533

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Lewis GP, Schrire B, MacKinder B, Lock M (2005) Legumes of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  • Luckow M, Fortunato RH, Sede S, Livshultz T (2005) The phylogenetic affinities of two mysterious monotypic mimosoids from southern South America. Syst Bot 30:585–602

    Article  Google Scholar 

  • Luckow M, Miller JT, Murphy DJ, Livshultz T (2003) A phylogenetic analysis of the Mimosoideae (Leguminosae) based on chloroplast DNA sequence data. In: Klitgaard B, Bruneau A (eds) Advances in legume systematics, Part 1.0. Royal Botanic Gardens, Kew, pp 197–220

    Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  CAS  PubMed  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science (Washington DC) 333:1257

    Article  CAS  Google Scholar 

  • McMahon MM (2005) Phylogenetic relationships and floral evolution in the papilionoid legume clade Amorpheae. Brittonia 57:397–411

    Article  Google Scholar 

  • Morales M, Wulff AF, Fortunato RH, Poggio L (2010) Chromosome and morphological studies in the Mimosa debilis complex (Mimosoideae, Leguminosae) from southern South America. Aust J Bot 58:12–22

    Article  Google Scholar 

  • Murphy DJ, Brown GK, Miller JT, Ladiges PY (2010) Molecular phylogeny of Acacia Mill. (Mimosoideae: Leguminosae): evidence for major clades and informal classification. Taxon 59:7–19

    Google Scholar 

  • Neumann P, Koblizkova A, Navratilova A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Ohashi H, Polhill RM, Schubert BG (1981) Desmodieae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 292–300

    Google Scholar 

  • Orthia LA, Cook LG, Crisp MD (2005) Generic delimitation and phylogenetic uncertainty: an example from a group that has undergone an explosive radiation. Aust Syst Bot 18:41–47

    Article  Google Scholar 

  • Ortiz MA, Guillermo Seijo J, Fernandez A, Lavia GI (2011) Meiotic behavior and pollen viability of tetraploid Arachis glabrata and A. nitida species (section Rhizomatosae, Leguminosae): implications concerning their polyploid nature and seed set production. Plant Syst Evol 292:73–83

    Article  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana RID E-2139-2011 RID C-1418-2008. Science 327:92–94

    Article  CAS  PubMed  Google Scholar 

  • Pandit MK, Tan HTW, Bisht MS (2006) Polyploidy in invasive plant species of Singapore. Bot J Linn Soc 151:395–403

    Article  Google Scholar 

  • Pandit MK, Pocock MJO, Kunin WE (2011) Ploidy influences rarity and invasiveness in plants. J Ecol 99: 1108-1115

    Article  Google Scholar 

  • Pardo C, Cubas P, Tahiri H (2004) Molecular phylogeny and systematics of Genista (Leguminosae) and related genera based on nucleotide sequences of nrDNA (ITS region) and cpDNA (trnL-trnF intergenic spacer). Plant Syst Evol 244:93–119

    Article  CAS  Google Scholar 

  • Pennington, RT, Klitgaard BB, Ireland H, Lavin M (2000) New insights into floral evolution of basal Papilionoideae from molecular phylogenies. In: Herendeen PS Bruneau A (eds.) Advances in legume systematics Part 9. Royal Botanic Gardens, Kew p 233–248

    Google Scholar 

  • Pennington, RT, Lavin M, Ireland H, Klitgaard BB, Preston J, Hu J-M (2001) Phylogenetic relationships of basal papilionoid legumes based upon sequences of the chloroplast trnL intron. Syst Bot 26:537–556

    Google Scholar 

  • Pfeil BE, Schlueter JA, Shoemaker RC, Doyle JJ (2005) Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Syst Biol 54:441–454

    Article  CAS  PubMed  Google Scholar 

  • Polhill RM (1981a) Dipteryxeae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 231–232

    Google Scholar 

  • Polhill RM (1981b) Indigofereae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 289–291

    Google Scholar 

  • Polhill RM, Raven PH (1981) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew

    Google Scholar 

  • Polhill RM, Sousa M (1981) Robinieae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 283–288

    Google Scholar 

  • Reddy VRK, Revathi R (1993) Chemotaxonomic studies in the genus Indigofera Linn. J Econ Taxon Bot 17:115–120

    Google Scholar 

  • Rosato M, Castro M, Rossello JA (2008) Relationships of the woody Medicago species (section Dendrotelis) assessed by molecular cytogenetic analyses. Ann Bot (London) 102:15–22

    Article  Google Scholar 

  • Rossello JA, Castro M (2008) Karyological evolution of the angiosperm endemic flora of the Balearic Islands. Taxon 57:259–273

    Google Scholar 

  • Sakiroglu M, Doyle JJ, Brummer EC (2010) Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. Theor Appl Genet 121:403–415

    Article  PubMed  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  CAS  PubMed  Google Scholar 

  • Schleueter J, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876

    Article  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the paleopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schrire BD, Lavin M, Barker NP, Forest F (2009) Phylogeny of the Tribe Indigofereae (Leguminosae-Papilionoideae): geographically structured more in succulent-rich and temperate settings than in grass-rich environments. Am J Bot 96:816–843, 844–852

    Google Scholar 

  • Seijo G, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971

    Article  PubMed  Google Scholar 

  • Seijo G, Fernandez A (2001) Chromosome numbers of some southernmost species of Mimosa L. (Leguminosae). Cytologia 66:19–23

    Article  Google Scholar 

  • Sen O, Bhattacharya S (1988) Cytomixis in vigna-glabrescens Ttk-1 wild. Cytologia 53:437–440

    Article  Google Scholar 

  • Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics 144:329–338

    CAS  PubMed  Google Scholar 

  • Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109

    Article  CAS  PubMed  Google Scholar 

  • Simon MF, Grether R, de Queiroz LP, Saerkinen TE, Dutra VF, Hughes CE (2011) The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants. Am J Bot 98:1201–1221

    Article  PubMed  Google Scholar 

  • Singer SR, Maki SL, Farmer AD, Ilut D, May GD, Cannon SB, Doyle JJ (2009) Venturing beyond beans and peas: what can we learn from chamaecrista? Plant Physiol 151:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Sinou C, Forest F, Lewis GP, Bruneau A (2009) The genus Bauhinia s.l. (Leguminosae): a phylogeny based on the plastid trnL-trnF region. Botany-Botanique 87:947–960

    Article  CAS  Google Scholar 

  • Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy. Taxon 59:1387–1403

    Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Spellenberg R (1981) Poly ploidy in Dalea-Formosa Fabaceae on the Chihuahuan desert. Brittonia 33:309–324

    Article  Google Scholar 

  • Sprent JI (2009) Legume nodulation: a global perspective. Wiley-Blackwell, Ames

    Book  Google Scholar 

  • Srivastav PK, Raina SN (1986) Cytogenetics of Tephrosia Vi. Meiotic systems in some taxa. Cytologia 51:359–374

    Article  Google Scholar 

  • Steele KP, Ickert-Bond SM, Zarre S, Wojciechowski MF (2010) Phylogeny and character evolution in Medicago (Leguminosae): evidence from analyses of plastid Trnk/matk and nuclear Ga3ox1 sequences. Am J Bot 97:1142–1155

    Article  CAS  PubMed  Google Scholar 

  • Stefanovic S, Pfeil BE, Palmer JD, Doyle JJ (2009) Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst Bot 34:115–128

    Article  Google Scholar 

  • Straub SCK, Doyle JJ (2009) Conservation genetics of Amorpha georgiana (Fabaceae), an endangered legume of the Southeastern United States. Mol Ecol 18:4349–4365

    Article  PubMed  Google Scholar 

  • Straub SCK, Pfeil BE, Doyle JJ (2006) Testing the polyploid past of soybean using a low-copy nuclear gene––is Glycine (Fabaceae: Papilionoideae) an auto- or allopolyploid? Mol Phylogenet Evol 39:580–584

    Article  CAS  PubMed  Google Scholar 

  • te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P (2011) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45

    Article  PubMed  Google Scholar 

  • Thulin M, Lavin M (2001) Phylogeny and biogeography of the Ormocarpum group (Fabaceae): a new genus Zygocarpum from the horn of Africa region. Syst Bot 26:299–317

    Google Scholar 

  • Tondini F, Tavoletti S, Mariani A, Veronesi F (1993) A statistical approach to estimate the frequency of n, 2n and 4n pollen grains in diploid alfalfa. Euphytica 69:109–114

    Article  Google Scholar 

  • Torres DC, Matos Santos Lima JP, Fernandes AG, Nunes EP, Grangeiro TB (2011) Phylogenetic relationships within chamaecrista sect. Xerocalyx (Leguminosae, Caesalpinioideae) inferred from the cpDNA trnE- trnT intergenic spacer and nrDNA ITS sequences. Genet Mol Biol 34:244–251

    Article  CAS  PubMed  Google Scholar 

  • Travnicek P, Eliasova A, Suda J (2010) The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia (Prague) 82:149–163

    Google Scholar 

  • Turini FG, Braeuchler C, Heubl G (2010) Phylogenetic relationships and evolution of morphological characters in Ononis L. (Fabaceae). Taxon 59:1077–1090

    Google Scholar 

  • van Wyk BE, Schutte AL (1988) Chromosome numbers in Lotononis and Buchenroedera (Fabaceae-Crotalarieae). Ann Missouri Bot Gard 75:1603–1607

    Article  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2011) Draft genome sequence of Pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotech. doi:10.1038/nbt.2022

    Google Scholar 

  • Veronesi F, Mariani A, Bingham ET (1986) Unreduced gametes in diploid medicago and their importance in alfalfa breeding. Theor Appl Genet 72:37–41

    Article  Google Scholar 

  • Wagstaff S, Heenan P, Sanderson M (1999) Classification, origins, and patterns of diversification in New Zealand Carmichaelinae (Fabaceae). Am J Bot 86:1346–1356

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Nat Acad Sci 106:3853–3858

    Article  CAS  PubMed  Google Scholar 

  • Wilbur RL (1975) A revision of the North American genus Amorpha Leguminosae Psoraleae. Rhodora 77:337–409

    Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Legumenosae) based on analyses of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91:1846–1862

    Article  CAS  PubMed  Google Scholar 

  • Wojciechowski M (2005) Astragalus (Fabaceae): a molecular phylogenetic perspective. Brittonia 57:382–396

    Article  Google Scholar 

  • Young N, Debellé F, Oldroyd G, Geurts R, Cannon SB et al (2011) The medicago genome provides insight into the evolution of rhizobial symbioses. Nature. doi:10.1038/nature10625

    Google Scholar 

  • Zhang M, Fritsch PW, Cruz BC (2009) Phylogeny of Caragana (Fabaceae) based on DNA sequence data from rbcL, trnS-trnG, and ITS. Mol Phylogenet Evol 50:547–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank many colleagues and lab members for discussions of polyploidy, and Jane Doyle for her support and encouragement. I also thank Jane Doyle, Sue Sherman-Broyles, Iben Sorensen, and Toby Pennington for critical reading of the manuscript, and Melissa Luckow for help with mimosoid systematics. I am grateful for many years of funding from the National Science Foundation for work on polyploidy, most recently grants DEB-0948800, IOS-0939423, IOS-0822258, and IOS-0744306. I thank Doug Soltis for helpful suggestions in review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff J. Doyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doyle, J.J. (2012). Polyploidy in Legumes. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_9

Download citation

Publish with us

Policies and ethics