Skip to main content

Ancient and Recent Polyploidy in Monocots

  • Chapter
  • First Online:
Book cover Polyploidy and Genome Evolution

Abstract

At least two whole-genome duplications (WGD) have profoundly influenced the evolution of most, if not all, grass (Poaceae) genomes, with the most recent of these predating the divergence of these lineages by 20 million or more years. Taxa within each major lineage of Poaceae (e.g., Panicoideae, Ehrhartoideae, Pooideae) have independently experienced additional polyploidizations that have been of central importance to the evolution and productivity of some of our most important crop plants [for example, sugarcane (Saccharum spp.), and durum and bread wheat (Triticum spp.)]. Following polyploidy, adaptation to the duplicated state is evident at the levels of transmission genetics, chromosome structure, and gene repertoire. While most duplicated chromosomal regions re-establish largely independent evolution within a few million years, 70-million-year-old duplicated chromosome segments in one unusual region of the rice genome and its orthologs in other grasses have continued to exhibit concerted evolution more recently than the divergence of rice subspecies japonica and indica an estimated 400,000 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Riddle NC, Auger DL, Veitia RA (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  Google Scholar 

  • Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for a dobzhansky-muller-type incompatibility syndrome in Plants. PLOS Biology 5:1962-1972

    Google Scholar 

  • Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, Brewer GA, Buss RW, Chen AH, Edwards TM, Estill JC, Exum HE, Goff VH, Herrick KL, Steele CLJ, Karunakaran S, Lafayette GK, Lemke C, Marler BS, Masters SL, McMillan JM, Nelson LK, Newsome GA, Nwakanma CC, Odeh RN, Phelps CA, Rarick EA, Rogers CJ, Ryan SP, Slaughter KA, Soderlund CA, Tang HB, Wing RA, Paterson AH (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Nat Acad Sci USA 102:13206–13211

    Article  CAS  PubMed  Google Scholar 

  • Bremer G (1923) A cytological investigation of some species and species-hybrids of the genus Saccharum. Genetica 5:273–326

    Article  Google Scholar 

  • Bremer G (1961) Problems in breeding and cytology of sugar cane. 4. Origin of increase of chromosome number in species hybrids of Saccharum. Euphytica 10:325–342

    Article  Google Scholar 

  • Chapman BA, Bowers JE, Feltus FA, Paterson AH (2006) Buffering crucial functions by paleologous duplicated genes may impart cyclicality to angiosperm genome duplication. Proc Nat Acad Sci USA 103:2730–2735

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B (2002) The evolution of chromosomal sex determination. Novartis Found Symp 244:207–219 (discussion 220–204, 253–207)

    Article  PubMed  Google Scholar 

  • Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed Rflp map of Sorghum-bicolor X S-propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  Google Scholar 

  • Devos KM, Pittaway TS, Reynolds A, Gale MD (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genetics 100:190–198

    Google Scholar 

  • Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258

    Article  CAS  PubMed  Google Scholar 

  • Freeling M (2001) Grasses as a single genetic system: reassessment 2001. Plant Physiol 125:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchinson D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, Paszkowski U, Zhang SP, Colbert M, Sun WL, Chen LL, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu YS, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100

    Google Scholar 

  • Haldane JBS (1933) The part played by recurrent mutation in evolution. Am Nat 67:5–19

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:2000–2014

    Article  Google Scholar 

  • Hilu KW (2004) Phylogenetics and chromosomal evolution in the Poaceae (grasses). Aust J Bot 52:10

    Article  Google Scholar 

  • International Rice Genome Sequencing P (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Jaillon O, Aury JM et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585

    Article  CAS  PubMed  Google Scholar 

  • Jeswiet J (1929) The development of selection and breeding of the sugarcane in Java. Int Soc Sugar Cane Technol 3:44–57

    Google Scholar 

  • Kim C, Tang H, Paterson AH (2009) Duplication and divergence of grass genomes: integrating the chloridoids. Trop Plant Biol 2:51–62

    Article  Google Scholar 

  • Kishimoto N, Higo H, Abe K, Arai S, Saito A, Higo K (1994) Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theor Appl Genet 88:722–726

    Article  CAS  Google Scholar 

  • Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science (New York) 286:964–967

    Article  CAS  Google Scholar 

  • Lawrence WJC (1931) The secondary association of chromosomes. Cytologia 2:352–384

    Article  Google Scholar 

  • Lawson Handley LJ, Hammond RL, Emaresi G, Reber A, Perrin N (2006) Low Y chromosome variation in Saudi-Arabian hamadryas baboons (Papio hamadryas hamadryas). Heredity 96:298–303

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Sachidanandam R, Stein L (2001) Comparative genomics between rice and Arabidopsis shows scant collinearity in gene order. Genome Res 11:2020–2026

    Article  CAS  PubMed  Google Scholar 

  • Lohithaswa HC, Feltus FA, Singh HP, Bacon CD, Bailey CD, Paterson AH (2007) Leveraging the rice genome sequence for comparative genomics in monocots. Theor Appl Genetics 115:237–243

    Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590–605

    Article  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Nat Acad Sci USA 102:5454–5459

    Article  CAS  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell 23:1249–1263

    Google Scholar 

  • Ming R, Moore PH (2007) Genomics of sex chromosomes. Curr Opin Plant Biol 10:123–130

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    CAS  PubMed  Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002a) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45:794–803

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Wang YW, Draye X, Moore PH, Irvine JE, Paterson AH (2002b) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  CAS  PubMed  Google Scholar 

  • Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20:1545–1557

    Google Scholar 

  • Nagamura Y, Inoue T, Antonio B, Shimano T, Kajiya H, Shomura A, Lin S, Kuboki Y, Harushima Y, Kurata N, Minobe Y, Yano M, Sasaki T (1995) Conservation of duplicated segments between rice chromosomes 11 and 12. Breed Sci 45:373–376

    CAS  Google Scholar 

  • Paterson AH (2008) Paleopolyploidy and its impact on the structure and function of modern plant genomes. Genome Dyn 4:1–12

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Lan TH, Reischmann KP, Chang C, Lin YR, Liu SC, Burow MD, Kowalski SP, Katsar CS, DelMonte TA, Feldmann KA, Schertz KF, Wendel JF (1996) Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nat Genet 14:380–382

    Article  CAS  PubMed  Google Scholar 

  • Paterson A, Bowers J, Peterson D, Estill J, Chapman B (2003) Structure and evolution of cereal genomes. Curr Opin Genet Dev 13:644–650

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Nat Acad Sci USA 101:9903–9908

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Chapman BA, Kissinger J, Bowers JE, Feltus FA, Estill J, Marler BS (2006) Convergent retention or loss of gene/domain families following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces, and Tetraodon. Trends Genet 22:597–602

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Feltus FA, Tang H, Lin L, Wang X (2009a) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149:125–131

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009b) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants, 7th edn. W. H. Freeman, New York

    Google Scholar 

  • Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009) Reconstruction of monocotelydoneous protochromosomes reveals faster evolution in plants than in animals. Proceedings of the National academy of sciences of the United States of America 106:14908–14913

    Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24

    Article  CAS  PubMed  Google Scholar 

  • Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:341–345

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han YJ, Lee H, Li PH, Lisch DR, Liu SZ, Liu ZJ, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu Q, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Nat Acad Sci USA 108:4069–4074

    Article  CAS  PubMed  Google Scholar 

  • Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 20:461–464

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Dalal V, Batra K, Singh BK, Chitra G, Singh A, Ghazi IA, Yadav M, Pandit A, Dixit R, Singh PK, Singh H, Koundal KR, Gaikwad K, Mohapatra T, Sharma TR (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics 7:17–35

    Google Scholar 

  • Soderstrom TR, Hilu KW, Campbell CS, Barkworth MA (1987) Grass systematics and evolution. Smithsonian Institution Press, Washington

    Google Scholar 

  • Soltis DE, Smith S, Cellinese N, Refulio-Rodriquez NF, Olmstead R, Crawley S, Black C, Diouf D, Hilu KW, Latvis M, Wurdack K, Xi Z, Davis C, Donoghue M, Soltis PS (2011) Inferring angiosperm phylogeny: a 17-gene analysis. Am J Bot 98:704–730

    Article  PubMed  Google Scholar 

  • Spangler R (2003) Taxonomy of Sarga, Sorghum, and Vacoparis (Poaceae: Andropogoneae). Aust Syst Bot 16:279–299

    Article  Google Scholar 

  • Spangler R, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281

    Article  Google Scholar 

  • Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and colinearity in plant genomes. Science 320:486–488

    Google Scholar 

  • Tang HB, Bowers JE, Wang XY, Paterson AH (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Nat Acad Sci USA 107:472–477

    Article  CAS  PubMed  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16:934–946

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5:752–763

    Article  PubMed  Google Scholar 

  • Vandepoele K, Simillion C, Van de Peer Y (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202

    Article  CAS  PubMed  Google Scholar 

  • Veitia RA, Bottani S, Birchler JA (2008) Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet 24:390–397

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Shi XL, Li Z, Zhu QH, Kong L, Tang W, Ge S, Luo JC (2006) Statistical inference of chromosomal homology based on gene colinearity and applications to arabidopsis and rice. BMC Bioinformatics 7:447

    Google Scholar 

  • Wang X, Tang H, Bowers JE, Feltus FA, Paterson AH (2007) Extensive concerted evolution of rice paralogs and the road to regaining independence. Genetics 177:1753–1763

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Tang H, Paterson AH (2011) Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages. Plant Cell 23:27–37

    Article  PubMed  Google Scholar 

  • Werth CR, Windham MD (1991) A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am Nat 137:515–526

    Article  Google Scholar 

  • Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U, Simkova H, Kubalakova M, Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Dolezel J, Keller B, Stein N (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. The Plant Cell 23:1706–1718

    Google Scholar 

  • Woodhouse MR, Schnable JC, Pedersen BS, Lyons E, Lisch D, Subramaniam S, Freeling M (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol 8:e1000409

    Article  PubMed  Google Scholar 

  • Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Nat Acad Sci USA 108:7908–7913

    Article  CAS  PubMed  Google Scholar 

  • Yin T, Difazio SP, Gunter LE, Zhang X, Sewell MM, Woolbright SA, Allan GJ, Kelleher CT, Douglas CJ, Wang M, Tuskan GA (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18:422–430

    Google Scholar 

  • Yu J, Wang J, Lin W, Li SG, Li H, Zhou J, Ni PX, Dong W, Hu SN, Zeng CQ, Zhang JG, Zhang Y, Li RQ, Xu ZY, Li ST, Li XR, Zheng HK, Cong LJ, Lin L, Yin JN, Geng JN, Li GY, Shi JP, Liu J, Lv H, Li J, Deng YJ, Ran LH, Shi XL, Wang XY, Wu QF, Li CF, Ren XY, Wang JQ, Wang XL, Li DW, Liu DY, Zhang XW, Ji ZD, Zhao WM, Sun YQ, Zhang ZP, Bao JY, Han YJ, Dong LL, Ji J, Chen P, Wu SM, Liu JS, Xiao Y, Bu DB, Tan JL, Yang L, Ye C, Zhang JF, Xu JY, Zhou Y, Yu YP, Zhang B, Zhuang SL, Wei HB, Liu B, Lei M, Yu H, Li YZ, Xu H, Wei SL, He XM, Fang LJ, Zhang ZJ, Zhang YZ, Huang XG, Su ZX, Tong W, Li JH, Tong ZZ, Li SL, Ye J, Wang LS, Fang L, Lei TT, Chen C, Chen H, Xu Z, Li HH, Huang HY, Zhang F, Xu HY, Li N, Zhao CF, Dong LJ, Huang YQ, Li L, Xi Y, Qi QH, Li WJ, Hu W, Zhang YL, Tian XJ, Jiao YZ, Liang XH, Jin JA, Gao L, Zheng WM, Hao BL, Liu SQ, Wang W, Yuan LP, Cao ML, McDermott J, Samudrala R, Wong GKS, Yang HM (2005) The genomes of Oryza sativa: a history of duplications. Plos Biology 3:266–281

    Google Scholar 

  • Zhou JH, Wang JL, Xu JC, Lei CL, Ling ZZ (2004) Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan. Plant Pathol. 53:191–196

    Google Scholar 

  • Zhang Y, Xu GH, Guo XY, Fan LJ (2005) Two ancient rounds of polyploidy in rice genome. J Zhejiang Univ Sci B 6:87–90

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Paterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paterson, A.H., Wang, X., Li, J., Tang, H. (2012). Ancient and Recent Polyploidy in Monocots. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_6

Download citation

Publish with us

Policies and ethics