Skip to main content

Polyploidization and Sex Chromosome Evolution in Amphibians

  • Chapter
  • First Online:
Polyploidy and Genome Evolution

Abstract

Genome duplication, including polyploid speciation and spontaneous polyploidy in diploid species, occurs more frequently in amphibians than mammals. One possible explanation is that some amphibians, unlike almost all mammals, have young sex chromosomes that carry a similar suite of genes (apart from the genetic trigger for sex determination). These species potentially can experience genome duplication without disrupting dosage stoichiometry between interacting proteins encoded by genes on the sex chromosomes and autosomal chromosomes. To explore this possibility, we performed a permutation aimed at testing whether amphibian species that experienced polyploid speciation or spontaneous polyploidy have younger sex chromosomes than other amphibians. While the most conservative permutation was not significant, the frog genera Xenopus and Leiopelma provide anecdotal support for a negative correlation between the age of sex chromosomes and a species’ propensity to undergo genome duplication. This study also points to more frequent turnover of sex chromosomes than previously proposed, and suggests a lack of statistical support for male versus female heterogamy in the most recent common ancestors of frogs, salamanders, and amphibians in general. Future advances in genomics undoubtedly will further illuminate the relationship between amphibian sex chromosome degeneration and genome duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr 19:716–723

    Article  Google Scholar 

  • Arnold AP, Itoh Y, Melamed E (2008) A bird’s-eye view of sex chromosome dosage compensation. Annu Rev Genomics Hum Genet 9:109–127

    Article  PubMed  CAS  Google Scholar 

  • Baéz AM (2000) Tertiary anurans from South America. In: Heatwole H, Carroll RL (eds) Amphibian biology. Surrey Beatty, Chipping Norton, Australia, pp 1388–1401

    Google Scholar 

  • Beçak ML, Beçak W (1998) Evolution by polyploidy in amphibia: new insights. Cytogenet Cell Genet 80:28–33

    Article  PubMed  Google Scholar 

  • Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102

    Article  PubMed  Google Scholar 

  • Bergero R, Charlesworth D (2011) Preservation of the Y transcriptome in a 10 million-year-old plant sex chromosome system. Curr Biol 21:1470–1474

    Article  PubMed  CAS  Google Scholar 

  • Bewick AJ, Anderson DW, Evans BJ (2011) Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution 65:698–712

    Article  PubMed  CAS  Google Scholar 

  • Blackburn DC and Beier M (2011) "Xenopus paratropicalis" is not a valid name. Zootaxa 3035:57–58

    Google Scholar 

  • Briggs R (1947) The experimental production and development of triploid frog embryos. J Exp Zool 106:237–266

    Article  PubMed  CAS  Google Scholar 

  • Bogart JP (1980) Evolutionary significance of polyploidy in amphibians and reptiles. In: Lewis WH (ed) Polyploidy, biological relavance. Basic life sciences, New York, pp 341–378

    Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution W. H. Freeman and Company, New York

    Google Scholar 

  • Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans R Soc London B 355:1563–1572

    Article  CAS  Google Scholar 

  • Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity 88:94–101

    Article  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B, Mariais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  PubMed  CAS  Google Scholar 

  • Duellman WE, Trueb L (1994) Biology of amphibians. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Eggert C (2005) Sex determination: the amphibian models. Reprod Nutr Dev 44:539–549

    Article  Google Scholar 

  • Evans BJ (2007) Ancestry influences the fate of duplicated genes millions of years after duplication in allopolyploid clawed frogs (Xenopus). Genetics 176:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Evans BJ (2008) Genome evolution and speciation genetics of allopolyploid clawed frogs (Xenopus and Silurana). Front Biosci 13:4687–4706

    Article  PubMed  CAS  Google Scholar 

  • Evans BJ, Cannatella DC, Melnick DJ (2004a) Understanding the origins of areas of endemism in phylogeographic analyses: a reply to Bridle et al. Evolution 58:1397–1400

    Google Scholar 

  • Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC (2004b) A mitochondrial DNA phylogeny of clawed frogs: phylogeography on sub-Saharan Africa and implications for polyploid evolution. Mol Phylogenet Evol 33:197–213

    Article  PubMed  CAS  Google Scholar 

  • Evans BJ, Carter TF, Hanner R et al (2008a) A new species of clawed frog (genus Xenopus), from the Itombwe Plateau, Democratic Republic of the Congo: implications for DNA barcodes and biodiversity conservation. Zootaxa 1780:55–68

    Google Scholar 

  • Evans BJ, Greenbaum E, Kusamba C et al (2011) Description of a new octoploid frog species (Anura: Pipidae: Xenopus) from the Democratic Republic of the Congo, with a discussion of the biogeography of African clawed frogs in the Albertine Rift. J Zool London 283:276–290

    Article  Google Scholar 

  • Evans BJ, Kelley DB, Melnick DJ, Cannatella DC (2005a) Evolution of RAG-1 in polyploid clawed frogs. Mol Biol Evol 22:1193–1207

    Article  PubMed  CAS  Google Scholar 

  • Evans SE, Jones MEH, Krause DW (2008b) A giant frog with South American affinities from the Late Cretaceous of Madagascar. Proc Nat Acad Sci 105:2951–2956

    Article  PubMed  CAS  Google Scholar 

  • Evans SE, Lally C, Chure DC, Elder A, Maisano JA (2005b) A new fully metamorphosed salamander from the Late Jurassic of North America. Zool J Linn Soc 143

    Google Scholar 

  • Evans SE, Milner AR (1996) A metamorphosed salamander from the early Cretaceous of Las Hoyas, Spain. Philos Trans R Soc London B 351:627–646

    Article  Google Scholar 

  • Ezaz T, Stiglec R, Veyrunes F, Graves JAM (2006) Relationships between vertebrate ZW and XY sex chromosome systems. Curr Biol 16:R736–R743

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756

    PubMed  CAS  Google Scholar 

  • Fankhauser G, Crotta R, Perrot M (1942) Spontaneous and cold-induced triploidy in the Japanese newt Triturus pyrrhogaster. J Exp Zool 89:167–181

    Article  Google Scholar 

  • Fankhauser G (1941) The frequency of polyploidy and other spontaneous aberrations of chromosome number among larvae of the newt Triturus viridescens. Proc Nat Acad Sci 27:507–512

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser G, Watson RC (1942) Heat-indiced triploidy in the newt, Triturus viridescens. Proc Nat Acad Sci 28:436–440

    Article  PubMed  CAS  Google Scholar 

  • Gardner JD (2003) The fossil salamander Proamphiuma cretacea Estes (Caudata: Amphiumidae) and relationships within the Amphiumidae. J Vertebr Paleontol 23:769–782

    Article  Google Scholar 

  • Graves JAM (2004) The degenerate Y chromosome—can conversion save it? Reprod Fertil Dev 16:527–534

    Article  PubMed  Google Scholar 

  • Graves JAM (2008) Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet 42:565–586

    Article  Google Scholar 

  • Green DM (1988) Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97:55–70

    Article  Google Scholar 

  • Green DM, Kezer J, Nussbaum RA (1984) Triploidy in Hochstetter’s frog, Leiopelma hochstetteri, from New Zealand. New Zealand J Zool 11:457–460

    Article  Google Scholar 

  • Green DM, Zeyl CW, Sharbel TF (1993) The evolution of hypervariable sex and supernumerary (B) chromosomes in the relict New Zealand frog, Leiopelma hochstetteri. J Evol Biol 6:417–441

    Article  Google Scholar 

  • Gregory TR, Mable BK (2005) Polyploidy in animals. In: Gregory TR (ed) The Evolution of the Genome. Elsevier Academic Press, Burlington, pp 428–517

    Google Scholar 

  • Hayes TB (1998) Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms. J Exp Zool 281:373–399

    Article  PubMed  CAS  Google Scholar 

  • Hillis DM, Green DM (1990) Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. J Evol Biol 3:49–64

    Article  Google Scholar 

  • Holloway AK, Cannatella DC, Gerhardt HC, Hillis DM (2006) Polyploids with different origins and ancestors form a single sexual polyploid species. Am Nat 167:E88–E101

    Article  PubMed  Google Scholar 

  • Holman JA (2003) Fossil frogs and toads of North America Indiana University Press. Bloomington and Indianapolis, IN

    Google Scholar 

  • Kashiwagi K (1993) Production of triploids and their reproductive capacity in Rana rugosa. Sci Rep Lab Amphibian Biol Hiroshima Univ 12:23–36

    Google Scholar 

  • Kawamura T, Tokunaga C (1952) The sex of triploid frogs, Rana japonica Günther. J Sci Hiroshima Univ, Ser B, Div 1 (Zoology) 13

    Google Scholar 

  • Humphrey RR (1963) Polyploidy in the Mexican axolotl (Ambystoma mexicanum) resulting from multinucleate ova. Proc Nat Acad Sci 50:1122–1127

    Article  PubMed  CAS  Google Scholar 

  • Kobel HR, Loumont C, Tinsley RC (1996) The extant species. In: Tinsley RC, Kobel HR (eds) The Biology of Xenopus. Clarendon Press, Oxford, pp 9–33

    Google Scholar 

  • Kawamura T (1984) Polyploidy in amphibians. Zool Sci 1:1–15

    Google Scholar 

  • Kobel HR (1996) Allopolyploid speciation. In: Tinsley RC, Kobel HR (eds) The Biology of Xenopus. Clarendon Press, Oxford, pp 391–401

    Google Scholar 

  • Kobel HR, Du Pasquier L (1986) Genetics of polyploid Xenopus. Trends Genet 2:310–315

    Article  Google Scholar 

  • Litvinchuk SN, Rosanov JM, Borkin LJ (1998) A case of natural triploidy in a smooth newt Triturus vulgaris (Linneaus, 1958), from Russia (Caudata: Salamandridae). Herpetozoa 11:93–95

    Google Scholar 

  • Mable BK (2004) ‘Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biol J Linn Soc 82:453–466

    Article  Google Scholar 

  • Mable BK, Alexandrou MA, Taylor MI (2011) Genome duplication in amphibians and fish: an extended synthesis. J Zool 284:151–182

    Article  Google Scholar 

  • Mable BK, Roberts JD (1997) Mitochondrial DNA evolution in the genus Neobatrachus (Anura: Myobatrachidae). Copeia 1997:680–689

    Article  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ et al (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257

    Article  PubMed  CAS  Google Scholar 

  • Milner AR (2000) Mesozoic and Tertiary Caudata and Albanerpetontidae. In: Heatwole H, Carrol RL (eds) Amphibian Biology. Surrey Beatty, Chipping Norton, Australia, pp 31–108

    Google Scholar 

  • Morescalchi A, Olmo E (1974) Sirenids: a family of polyploid urodeles? Experientia 30:491–492

    Article  PubMed  CAS  Google Scholar 

  • Moler PE, Kezer J (1993) Karyology and systematics of the salamander genus Pseudobranchus (Sirenidae). Copeia 1993:39–47

    Article  Google Scholar 

  • Muller HJ (1925) Why polyploidy is rarer in animals in plants. Am Nat 59:346–353

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9

    PubMed  CAS  Google Scholar 

  • Naylor BG, Fox RC (1993) A new ambystomatid salamander Dicamptodon antiquus n. sp. from the Paleocene of Alberta. Can J Earth Sci 30:814–818

    Article  Google Scholar 

  • Nielsen R (2002) Mapping mutations on phylogenies. Syst Biol 51:729–739

    Article  PubMed  Google Scholar 

  • Ogata M, Hasegawa Y, Ohtani H, Mineyama M, Miura I (2008) The ZZ/ZW sex-determining mechanism originated twice and independently during evolution of the frog, Rana rugosa. Heredity 100:92–99

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Berlin

    Book  Google Scholar 

  • Orr HA (1990) ‘Why polyploidy is rarer in animals than in plants’ revisited. Am Nat 136:759–770

    Article  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  PubMed  CAS  Google Scholar 

  • Papp B, Pál C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197

    Article  PubMed  CAS  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Bioinf 20:289–290

    Article  CAS  Google Scholar 

  • Poinar GO, Cannatella DC (1987) An upper Eocene frog from the Dominican Republic and its implication for Caribbean biogeography. Science 237:1215–1216

    Article  PubMed  Google Scholar 

  • Pyron RA, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 61:543–583

    Article  PubMed  Google Scholar 

  • Qian W, Zhang J (2008) Gene dosage and gene duplicability. Genetics 179:2319–2324

    Article  PubMed  Google Scholar 

  • Rage JC, Rocek Z (1989) Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the early Triassic. Palaeontographica Paleontologica 206:1–16

    Google Scholar 

  • Revell JJ (2011) Phytools: phylogenetic tools for comparative biology (and other things). (R Package)

    Google Scholar 

  • Rocek Z (2000) Mesozoic anurans. In: Heatwole H, Carrol RL (eds) Amphibian biology. Surrey Beatty, Chipping Norton, Australia, pp 1295–1331

    Google Scholar 

  • Rocek Z, Rage J-C (2000) Tertiary Anura of Europe, Africa, Asia, North America, and Australia. In: Heatwole H, Carrol RL (eds) Amphibian Biology. Surrey Beatty, Chipping Norton, Australia, pp 1332–1387

    Google Scholar 

  • Sanchiz FB (1998) Salienta. In: Wellnhofer P (ed) Encyclopedia of paleoherpetology, Part 4, Salienta. Verlag, Pfeil, Munich, pp 1–276

    Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:1218–1231

    Article  Google Scholar 

  • Sanderson MJ (2003) r8s: inferring absolute rates of evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Sims SH, Haaf T, Macgregor HC (1986) Chromosome banding in amphibia X. 18S and 28S ribosomal RNA genes, nucleolus organizers and nucleoli in Gastrotheca riobambae. Chromosoma 94:139–145

    Article  CAS  Google Scholar 

  • Schmid M, Steinlein C (2001) Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. In: Scherer G, Schmid M (eds) Genes and mechanisms in vertebrate sex determination. Verlag, Basel, pp 143–176

    Chapter  Google Scholar 

  • Schmid M, Steinlein C, Bogart JP et al (2010) The chromosomes of terraranan frogs. Cytogenetic Genome Res 130–131:1–568

    Article  Google Scholar 

  • Schmid M, Steinlein C, Friedl R et al (1990) Chromosome banding in Amphibia. XV. Two types of Y chromosomes and heterochromatin hypervariability in Gastrotheca pseustes (Anura, Hylidae). Chromosoma 99:413–423

    Article  Google Scholar 

  • Sharbel TF, Green DM, Houben A (1998) B-chromosome origin in the endemic New Zealand frog Leiopelma hochstetteri through sex chromosome devolution. Genome 41:14–22

    PubMed  CAS  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 432:823–837

    Google Scholar 

  • Stöck M, Horn A, Grossen C et al (2011) Ever-young sex chromosomes in European tree frogs. PLoS Biol 9:e1001062

    Article  PubMed  Google Scholar 

  • Stöck M, Ustinova J, Lamatsch DK et al (2009) A vertebrate reproductive system involving three ploidy levels: Hybrid origin of triploids in a contact zone of diploid and tetraploid Paleartic green toads (Bufo viridis subgroup). Evolution 64:944–959

    Article  PubMed  Google Scholar 

  • Straub T, Becker PB (2007) Dosage compensation: the beginning and end of a generalization. Nat Rev Genet 8:47–57

    Article  PubMed  CAS  Google Scholar 

  • Svartman M, Stone G, Stanyon R (2005) Molecular cytogenetics discards polyploidy in mammals. Genomics 85:425–430

    Article  PubMed  CAS  Google Scholar 

  • Tihen JA, Wake DB (1981) Vertebrae of plethodontid salamanders from the Lower Miocene of Montana. J Herpetology 15:35–40

    Article  Google Scholar 

  • Tymowska J (1991) Polyploidy and cytogenetic variation in frogs of the genus Xenopus. In: Green DS, Sessions SK (eds) Amphibian cytogenetics and evolution. Academic Press, San Diego, pp 259–297

    Google Scholar 

  • Uzzell T, Berger L, Günther R (1975) Diploid and triploid progeny from a diploid female of Rana esculenta (Amphibia Salientia). Proc Acad Nat Sci Philadelphia 127:81–91

    Google Scholar 

  • Wiens JJ (2011) Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s Law. Evolution 65:1283–1296

    Article  PubMed  Google Scholar 

  • Wiens JJ, Sukumaran J, Pyron RA, Brown RM (2009) Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae). Evolution 63:1217–1231

    Article  PubMed  Google Scholar 

  • Wolfe KH (2001) Yesterdays’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto S, Ikeda K, Izutsu Y et al (2010) Opposite roles of DMRT1 and its W-linked paralog, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development 137:2519–2526

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto S, Okada E, Umemoto H et al (2008) A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Nat Acad Sci 105:2469–2474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to Barbara Mable who provided a comprehensive critical assessment of an earlier version of this chapter. We also thank Liam Revell for advice and assistance with the R package “phytools” and Jim Bogart and Ben Bolker for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben J. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evans, B.J., Alexander Pyron, R., Wiens, J.J. (2012). Polyploidization and Sex Chromosome Evolution in Amphibians. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_18

Download citation

Publish with us

Policies and ethics