Skip to main content

The Early Stages of Polyploidy: Rapid and Repeated Evolution in Tragopogon

  • Chapter
  • First Online:
Book cover Polyploidy and Genome Evolution

Abstract

Elucidating the causes and consequences of polyploidy (whole-genome duplication; WGD) is arguably central to understanding the evolution of most eukaryotic lineages. However, much of what we know about these processes is derived from the study of crops and synthetic polyploids. Tragopogon provides the unique opportunity to investigate the genetic and genomic changes that occur across an evolutionary series from F1 hybrids, synthetic allopolyploids, independently formed natural populations of T. mirus and T. miscellus that are 60–80 years post-formation, to older Eurasian polyploids that are dated by molecular clocks at several million years old, and finally to a putative ancient polyploidization thought to have occurred prior to or early in the history of the Asteraceae (40–43 mya). Tragopogon joins other well-studied natural polyploid systems (e.g., Glycine, Nicotiana, Gossypium, Spartina, Senecio), but presents a range of research possibilities that is not available in any other system. We have shown in T. mirus and T. miscellus that upon allopolyploidization, massive gene loss occurs in patterns that are repeated across populations of independent origin and with a bias against genes derived from T. dubius, the diploid parent shared by both new allotetraploids. We have also shown significant changes in gene expression (transcriptomic shock) in the early generations of allopolyploidy in these species. Massive and repeated patterns of chromosomal variation (intergenomic translocations and aneuploidy) have been revealed by fluorescence in situ hybridization. Aneuploidy results in substitutions between homeologous chromosomes, through reciprocal monosomy-trisomy (1:3 copies) or nullisomy-tetrasomy (0:4 copies). We propose that substantial chromosomal instability results in karyotype restructuring, a likely common process following WGD and a driver of allopolyploid speciation, which has largely unexplored implications for gene losses, gains, and expression patterns. But gene loss and expression changes as well as karyotypic changes are ongoing in T. mirus and T. miscellus, in that no population is fixed for any of these events; thus, we have literally caught evolution in the act.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ, Ireland HE, Rogers HJ (2007) Population decline despite high genetic diversity in the new allopolyploid species Senecio cambrensis (Asteraceae). Mol Ecol 16:1023–1033

    PubMed  CAS  Google Scholar 

  • Abbott RJ, Lowe AJ (2004) Origins, establishment, and evolution of new polyploids species: Senecio cambrensis and S. eboracensis in the British Isles. Biol J Linn Soc 82:467–474

    Google Scholar 

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Nat Acad Sci USA 100:4649–4654

    PubMed  CAS  Google Scholar 

  • Adams KL, Percifield R, Wendel JF (2004) Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics 168:2217–2226

    PubMed  CAS  Google Scholar 

  • Adams KL, Wendel JF (2004) Exploring the genomic mysteries of polyploidy in cotton. Biol J Linn Soc 82:573–581

    Google Scholar 

  • Ainouche ML, Baumel A, Salmon A (2004) Spartina anglia C. E. Hubbard: a natural model system for analyzing early evolutionary changes that affect allopolyploid genomes. Biol J Linn Soc 82:475–484

    Google Scholar 

  • Ainouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien M-A, Ricou K, Fukunaga M, Misset M-T (2009) Hybridization, polyploidy and invasion: Lessons from Spartina (Poaceae). Biol Invasion. doi:10.1007s10530-0089383-2

    Google Scholar 

  • Ashton PA, Abbott RJ (1992) Multiple origins and genetic diversity in the newly arisen allopolyploid species Senecio cambrensis Rosser (Compositae). Heredity 68:25–32

    Google Scholar 

  • Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH (2008) Multiple Paleopolyploidizations during the evolution of the compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol 25:2445–2455

    PubMed  CAS  Google Scholar 

  • Birchler JA, Riddle NC, Auger DL, Veitia R (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226

    PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis divergence. Plant Cell 16:1679–1691

    PubMed  CAS  Google Scholar 

  • Blanca G, Díaz de la Guardia C (1996) Sinopsis del género Tragopogon L. (Asteraceae) en la Peninsula Ibérica. Anales del Jardín Botánico de Madrid 54:358–363

    Google Scholar 

  • Buggs RJA, Doust AN, Tate JA, Koh J, Soltis K, Feltus FA, Paterson AH, Soltis PS, Soltis DE (2009) Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity 103:73–81

    PubMed  CAS  Google Scholar 

  • Buggs RJA, Chamala S, Wu W, Gao L, May GD, Schnable PS, Soltis DE, Soltis PS, Barbazuk WB (2010a) Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX genotyping. Mol Ecol 19(1):1–15

    Google Scholar 

  • Buggs RJA, Elliott NM, Zhang L, Koh J, Viccini LF, Soltis DE, Soltis PS (2010b) Tissue-specific silencing of homoeologs in natural populations of the recent allopolyploid Tragopogon mirus. New Phytol 186:175–183

    PubMed  CAS  Google Scholar 

  • Buggs RJA, Soltis PS, Soltis DE (2011a) Biosystematic relationships and the formation of polyploids. Taxon 60:324–332

    Google Scholar 

  • Buggs RJA, Zhang L, Miles N, Tate JA, Gao L, Schnable PS, Barbazuk WB, Soltis PS, Soltis DE (2011b) Genomic and transcriptomic shock generate evolutionary novelty in a newly formed, natural allopolyploid plant. Curr Biol 21:1–6

    Google Scholar 

  • Buggs RJA, Gao L, Wu W, Chamala S, Tate JA, Schnable PS, Soltis DE, Soltis PS, Barbazuk WB (2012) Rapid and repeated gene loss in a young polyploidy species. Curr Biol 22:248–252

    PubMed  CAS  Google Scholar 

  • Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF (2009) Reciprocal silencing, transcriptional bias and functional divergence of homoeologs in polyploid cotton (Gossypium). Genetics 182:503–517

    PubMed  CAS  Google Scholar 

  • Chelaifa H, Mahe F, Ainouche M (2010a) Transcriptome divergence between the hexaploid salt-marsh sister species Spartina maritima and Spartina alterniflora (Poaceae). Mol Ecol 19:2050–2063

    PubMed  CAS  Google Scholar 

  • Chelaifa H, Monnier A, Ainouche M (2010b) Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina x townsendii and Spartina anglica (Poaceae). New Phytol 186:161–174

    PubMed  CAS  Google Scholar 

  • Chen ZJ, Wang J, Tian L, Lee HS, Wang JJ, Chen M, Lee JJ, Josefsson C, Madlung A, Watson B, Pires JC, Lippman Z, Vaughn M, Colot V, Birchler JA, Doerge RW, Martienssen RA, Comai L, Osborn TC (2004) The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects. Biol J Linn Soc 82:689–700

    Google Scholar 

  • Chester M, Gallagher JP, Symonds VV, da Veruska Cruz Silva A, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE (2012) Extensive and repeated patterns of chromosomal variation in natural populations of a recently formed polyploid plant species. Proc Nat Acad Sci USA 109:1176–1181

    PubMed  CAS  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM. 1945. Experimental studies on the nature of species II. Plant evolution through amphiploidy and autopolyploidy, with examples from the Madiinae. Publication 564, Carnegie Institute of Washington, Washington, DC

    Google Scholar 

  • Crisp PC (1972) Cytotaxonomic studies in the section Annui of Senecio. Ph. D Thesis, University of London

    Google Scholar 

  • Darlington CD (1937) Recent advances in cytology, 2nd edn. The Blakiston Company, Philadelphia

    Google Scholar 

  • Duarte JM, Cui L, Wall PK, Zhang Q, Zhang X, Leebens-Mack J, Ma H, Altman N, dePamphilis CW (2006) Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol Biol Evol 23:469–478

    PubMed  CAS  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuvéglise C, Talla E et al (2004) Genome evolution in yeasts. Nature 430:35–44

    PubMed  Google Scholar 

  • Flagel L, Udall J, Nettleton D, Wendel J (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6:11

    Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression during allotetraploid cotton speciation. New Phytol 186:184–193

    PubMed  CAS  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    PubMed  CAS  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    PubMed  CAS  Google Scholar 

  • Gaeta RT, Pires JC (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    PubMed  CAS  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    PubMed  CAS  Google Scholar 

  • Ganko EW, Meyers BC, Vision TJ (2007) Divergence in expression between duplicated genes in Arabidopsis. Mol Biol Evol 24:2298–2309

    PubMed  CAS  Google Scholar 

  • Gould SJ (1994) The evolution of life on Earth. Sci Am 271:85–86

    Google Scholar 

  • Gregory TR, Mable BK (2005) Polyploidy in animals. In: Gregory TR (ed) The evolution of the Genome. Elsevier/Academic, San Diego, pp 428–501

    Google Scholar 

  • Hegarty MJ, Jones JM, Wilson ID, Barker GL, Coghill JA, Sanchez-Baracaldo P, Liu G, Buggs RJA, Abbott RJ, Edwards KJ, Hiscock SJ (2005) Development of anonymous cDNA microarrays to study changes to the Senecio floral transcriptome during hybrid speciation. Mol Ecol 14:2493–2510

    PubMed  CAS  Google Scholar 

  • Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol 16:1652–1659

    PubMed  CAS  Google Scholar 

  • Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ (2008) Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos Trans R Soc London B series 363:3055–3069

    CAS  Google Scholar 

  • Hegarty MJ, Batstone T, Barker GL, Edwards KJ, Abbott RJ, Hiscock SJ (2011) Nonadditive changes to cytosine methylation as a consequence of hybridization and genome duplication in Senecio (Asteraceae). Mol Ecol 20:105–113

    PubMed  CAS  Google Scholar 

  • Hovav R, Udall J, Chaudhary B, Flagel L, Rapp R, Wendel J (2008a) Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc Nat Acad Sci USA 105:6191

    CAS  Google Scholar 

  • Hovav R, Udall JA, Chaudhary B, Hovav E, Flagel L, Hu G, Wendel JF (2008b) The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet 4:e2

    Google Scholar 

  • Jiao Y, Wickett N, Ayyampalayam S, Chanderbali A, Landherr L, Ralph PE, Soltis PS, Soltis DE, Clifton SE, Ma H, Leebens-Mack J, dePamphilis CW (2011) Phylogenomic analysis reveals ancient genome duplications in seed plant and angiosperm history. Nature 473:97–100

    PubMed  CAS  Google Scholar 

  • Jurinke C, Denissenko MF, Oeth P, Ehrich M, van den Boom D, Cantor CR (2005) A single nucleotide polymorphism based approach for the identification and characterization of gene expression modulation using MassARRAY. Mutat Res 573:83–95

    PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing, and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    PubMed  CAS  Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    PubMed  CAS  Google Scholar 

  • Koh J, Tate JA, Soltis PS, Soltis DE (2010) Genomic and expression differences in natural populations of the recently formed allotetraploid Tragopogon mirus (Asteraceae). BMC Genomics 11:97

    PubMed  Google Scholar 

  • Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood A, Matyasek R, Rocca J, Soltis DE, Soltis PS (2005) Rapid concerted evolution in two allopolyploids of recent and recurrent origin. Genetics 169:931–944

    PubMed  CAS  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Lim KY, Soltis DE, Soltis PS, Tate JA, Matyasek R, Srubarova H, Kovarik A, Pires JC, Xiong ZY, Leitch AR (2008) Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One 3:e3353

    PubMed  Google Scholar 

  • Löve A, Löve D (1949) The geobotanical significance of polyploidy. I. Polyploidy and latitude. Portugaliae Acta Biologica Serie A, Suppl vol. pp 273–352

    Google Scholar 

  • Lynch M, Connery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    PubMed  CAS  Google Scholar 

  • Ma XF, Fang P, Gustafson JP (2004) Polyploidization-induced genome variation in Triticale. Genome 47:839–848

    PubMed  CAS  Google Scholar 

  • Ma XF, Fang P, Gustafson JP (2006) Timing and rate of genome variation in Triticale following allopolyploidization. Genome 49:950–958

    PubMed  CAS  Google Scholar 

  • Mable B (2003) Breaking down taxonomic barriers in polyploidy research. Trends Plant Sci 8:582–590

    PubMed  CAS  Google Scholar 

  • Mable BK, Alexandrou MA, Taylor MI (2011) Genome duplications in amphibians and fish: an extended synthesis. J Zool 284:151–182

    Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94:481 495

    PubMed  CAS  Google Scholar 

  • Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, Soltis PS, Kovarik A (2010) Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol 10:291

    PubMed  Google Scholar 

  • Malinska H, Tate JA, Mavrodiev E, Matyasek R, Lim KY, Leitch AR, Soltis DE, Soltis PS, Kovarik A (2011) Ribosomal RNA genes evolution in Tragopogon: A story of New and Old World allotetraploids and synthetic lines. Taxon 60:348–354

    Google Scholar 

  • Matyasek R, Tate J, Lim YK, Srubaraova H, Koh J, Leitch A, Soltis DE, Soltis PS (2007) Concerted evolution of rDNA in recently formed Tragopogon allotetraploids is typically associated with an inverse correlation between gene copy number and expression. Genetics 176:2509–2519

    PubMed  CAS  Google Scholar 

  • Mavrodiev E, Soltis PS, Soltis DE (2008a) Parentage of six Old World polyploids in Tragopogon L. (Asteraceae: Scorzonerinae) based on ITS. ETS and plastid sequence data. Taxon 57:1217–1232

    Google Scholar 

  • Mavrodiev E, Nawchoo I, Soltis DE, Soltis PS (2008b) Molecular data reveal that the tetraploid Tragopogon kashmirianus Singh, a narrow endemic of Kashmir, is distinct from the North American T. mirus M. Ownbey. Bot J Linn Soc 158:391–398

    Google Scholar 

  • Mavrodiev EV, Albach DC, Speranza P (2008c) A new polyploid species of the genus Tragopogon (Asteraceae, Cichorieae) from Russia. Novon 18:229–232

    Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    PubMed  CAS  Google Scholar 

  • Morris SC (1998) The crucible of creation: the Burgess shale and the rise of animals. Oxford University Press, Oxford

    Google Scholar 

  • Müntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:263–378

    Google Scholar 

  • Novak SJ, Soltis DE, Soltis PS (1991) Ownbey Tragopogons—40 Years later. Am J Bot 78:1586–1600

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  • Ownbey M (1950) Natural hybridization and amphiploidy in the genus Tragopogon. Am J Bot 37:487–499

    Google Scholar 

  • Ownbey M, McCollum G (1954) The chromosomes of Tragopogon. Rhodora 56:7–21

    Google Scholar 

  • Ownbey M, McCollum GD (1953) Cytoplasmic inheritance and reciprocal amphiploidy in Tragopogon. Am J Bot 40:788–796

    Google Scholar 

  • Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications—the adventure of a hypothesis. Trends Genet 10:559–567

    Google Scholar 

  • Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197

    PubMed  CAS  Google Scholar 

  • Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien M-A, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015

    PubMed  CAS  Google Scholar 

  • Paterson AH, Chapman BA, Kissinger J, Bowers JE, Feltus FA, Estill JC, Marler BS (2006) Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon. Trends Genet 22:597–602

    PubMed  CAS  Google Scholar 

  • Petit RJ, Aguinagalde, JL de Beaulieu, C Bittkau, S Brewer, R Cheddadi, R Ennos, S Fineschi, D Grivet, M Lascoux, A Mohanty, G Müller-Starck, B Musch, A Palmé, S Rendell, GG. Vendramin (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Google Scholar 

  • Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proc Nat Acad Sci USA 108:6697–6698

    Google Scholar 

  • Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. BMC Biol. 7:18

    PubMed  Google Scholar 

  • Renny-Byfield S, Ainouche M, Leitch IJ, Lim KY, Le Comber SC, Leitch AR (2010) Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Ann Bot 105:527–533

    PubMed  Google Scholar 

  • Rodin SN, Riggs AD (2003) Epigenetic silencing may aid evolution by gene duplication. J Mol Evol 56:718–729

    PubMed  CAS  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    PubMed  CAS  Google Scholar 

  • Semon M, Wolfe KH (2008) Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis. Proc Nat Acad Sci USA 105:8333–8338

    PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Nat Acad Sci USA 92:8089–8091

    PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485–501

    Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson A, Zheng C, Sankoff D, Wall PK, Soltis PS (2009a) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    PubMed  Google Scholar 

  • Soltis DE, Buggs RJA, Barbazuk WB, Schnable PS, Soltis PS (2009b) On the origins of species: does evolution repeat itself in polyploid populations of independent origin? Cold spring harbor symposia on quantitative biology, Vol. LXXIV

    Google Scholar 

  • Soltis DE, Mavrodiev EV, Meyers, SC, Severns PM, Zhang L, Gitzendanner MA, Ayers T, Chester M, Soltis PS (2012) Additional origins of Ownbey’s Tragopogon mirus. Bot Linn Soc 169:297–311

    Google Scholar 

  • Soltis DE, Soltis PS (1989) Allopolyploid speciation in Tragopogon: Insights from chloroplast DNA. Am J Bot. 76:1119–1124

    CAS  Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    CAS  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    PubMed  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Nat Acad Sci (USA) 97:7051–7057

    CAS  Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    PubMed  CAS  Google Scholar 

  • Soltis PS, Plunkett GM, Novak SJ, Soltis DE (1995) Genetic variation in Tragopogon species: additional origins of the allotetraploids T. mirus and T. miscellus (Compositae). Am J Bot 82:1329–1341

    Google Scholar 

  • Song KM, Lu P, Tang KL, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Nat Acad Sci USA 92:7719–7723

    PubMed  CAS  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia, New York

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, London

    Google Scholar 

  • Stern DL, Orgogozo V (2009) Is genetic evolution predictable? Science 323:746–751

    PubMed  CAS  Google Scholar 

  • Symonds VV, Soltis PS, Soltis DE (2010) Dynamics of polyploid formation in Tragopogon (Asteraceae): recurrent formation, gene flow, and population structure. Evolution 64:1984–2003

    PubMed  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lod M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux M, Delourme R, King G (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    PubMed  CAS  Google Scholar 

  • Tate JA, Ni Z, Scheen AC, Koh J, Gilbert CA, Lefkowitz D, Chen ZJ, Soltis PS, Soltis DE (2006) Evolution and expression of homoeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173:1599–1611

    PubMed  CAS  Google Scholar 

  • Tate JA, Symonds VV, Doust AN, Buggs RJA, Mavrodiev EV, Soltis PS, Soltis DE (2009a) Synthetic polyploids of Tragopogon miscellus and T. mirus (Asteraceae): 50 + years after Ownbey’s discovery. Am J Bot 96:979–988

    PubMed  Google Scholar 

  • Tate JA, Joshi P, Soltis K, Soltis PS, Soltis DE (2009b) On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae). BMC Plant Biol 9:80

    PubMed  Google Scholar 

  • Udall JA, Swanson JM, Nettleton D, Percifield RJ, Wendel JF (2006) A novel approach for characterizing expression levels of genes duplicated by polyploidy. Genetics 173(3):1823–1827

    PubMed  CAS  Google Scholar 

  • Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Nat Acad Sci USA 108:7908–7913

    PubMed  CAS  Google Scholar 

  • Wang JL, Tian L, Madlung A, Lee HS, Chen M, Lee JJ, Watson B, Kagochi T, Comai L, Chen ZJ (2004) Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167:1961–1973

    PubMed  CAS  Google Scholar 

  • Wang JL, Tian L, Lee HS, Wei NE, Jiang HM, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    PubMed  CAS  Google Scholar 

  • Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes coding for the ∂ chains of hemoglobin. Proc Nat Acad Sci USA 77:2158–2162

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the University of Florida and NSF grants MCB-0346437, DEB-0614421, DEB-0919254, DEB-0922003, and DEB-0919348. R.J.A.B. has been supported since March 2010 by NERC Fellowship NE/G01504X/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Soltis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soltis, D.E. et al. (2012). The Early Stages of Polyploidy: Rapid and Repeated Evolution in Tragopogon . In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_14

Download citation

Publish with us

Policies and ethics