Skip to main content

Erratum From—Polyploid Evolution in Spartina: Dealing with Highly Redundant Hybrid Genomes

  • Chapter
  • First Online:
Book cover Polyploidy and Genome Evolution

Abstract

Polyploidy and recurrent interspecific hybridization represent major features of Spartina evolution, resulting in several superimposed divergent genomes that coexist in the currently living species. This chapter summarizes what we presently know about Spartina history, emphasizing the recent hybridization and polyploidization events that have important ecological and evolutionary consequences. Particular attention is devoted to the recent formation of the allododecaploid invasive Spartina anglica, a salt-marsh “ecosystem engineer” that resulted from hybridization between the hexaploid S. alterniflora (introduced from North America) and tetraploid S. maritima (a European native) and subsequent genome duplication of the F1 hybrid S. x townsendii during the nineteenth century in Western Europe. Allopolyploidy was not accompanied by substantial restructuring of the parental genomes, as observed in some other allopolyploid systems. The major evolutionary events affect the regulatory systems controlling gene expression (including epigenetic regulation), which appear to have been profoundly altered by the merger of different genomes. Methodological challenges in exploring non-model, highly redundant genomes resulting from superimposed events of polyploidization (such as those encountered in Spartina) and the contribution of the new massive parallel sequencing technologies are discussed.

An erratum to this chapter is available at 10.1007/978-3-642-31442-1_19.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-31442-1_19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sc USA 100(8):4649–4654

    Google Scholar 

  • Ainouche ML, Jenczewski E (2010) Focus on polyploidy. New Phytol 186:1–4

    Article  PubMed  Google Scholar 

  • Ainouche ML, Baumel A, Salmon A (2004a) Spartina anglica Schreb. A natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol J Linn Soc 82:475–484

    Article  Google Scholar 

  • Ainouche ML, Baumel A, Salmon A, Yannic G (2004b) Hybridization, polyploidy and speciation in Spartina Schreb (Poaceae). New Phytol 161:165–172

    Article  CAS  Google Scholar 

  • Ainouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien M-A, Fukunaga K, Ricou M, Misset M-T (2009) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invasion. doi:10.1007s10530-0089383-2

    Google Scholar 

  • Antilla CK, King RA, Ferris C, Ayres DR, Strong DR (2000) Reciprocal hybrid formation of Spartina in San Francisco Bay. Mol Ecol 9:765–770

    Article  Google Scholar 

  • Ayres DR, Strong DR (2001) Origin and genetic diversity of Spartina anglica (Poaceae) using nuclear DNA markers. Am J Bot 88:1863–1867

    Article  PubMed  CAS  Google Scholar 

  • Ayres DR, Garcia-Rossi D, Davis HG, Strong DR (1999) Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by randomly amplified polymorphic DNA (RAPDs). Mol Ecol 8:1179–1186

    Article  Google Scholar 

  • Ayres DR, Smith DL, Zaremba K, Klohr S, Strong DR (2004) Spread of exotic cordgrass and hybrids (Spartina sp) in the tidal marshes of San-Francisco Bay CA, USA. Biol Invasions 6:221–231

    Article  Google Scholar 

  • Ayres DA, Zaremba K, Sloop CM, Strong DR (2007) Sexual reproduction of cordgrass hybrids (Spartina foliosa × alterniflora) invading tidal marshes in San Francisco Bay. Divers Distrib 14:187–195

    Article  Google Scholar 

  • Ayres DR, Grotkopp E, Zaremba C, Sloop CM, Bloom MJ, Bailey JP, Anttila CK, Strong DR (2008) Hybridization between invasive Spartina densiflora (Poaceae) and native S. foliosa in San Francisco Bay. Am J Bot 95:713–719

    Article  PubMed  Google Scholar 

  • Baumel A, Ainouche ML, Levasseur JE (2001) Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Mol Ecol 10:1689–1701

    Article  PubMed  CAS  Google Scholar 

  • Baumel A, Ainouche ML, Bayer RJ, Ainouche AK, Misset M-T (2002a) Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Mol Phylogenet Evol 22:303–314

    Article  PubMed  CAS  Google Scholar 

  • Baumel A, Ainouche ML, Kalendar R, Schulman AH (2002b) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    Article  PubMed  CAS  Google Scholar 

  • Baumel A, Ainouche ML, Misset MT, Gourret JP, Bayer RJ (2003) Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in South-West France: Spartina x neyrautii re-examined. Plant Syst Evol 237:87–97

    Article  CAS  Google Scholar 

  • Bortolus A (2006) The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. J Biogeogr 33:158–168

    Article  Google Scholar 

  • Buggs RJA, Chamala S, Wu W, Gao L, May GD, Schnable PS, et al. (2010) Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next generation sequencing and Sequenom iPLEX MassARRAY genotyping. Mol Ecol 19:132–146

    Google Scholar 

  • Buggs RJA, Zhang L, Miles N, Gao L, Wu W, Schnable P, Barbazuk WB, Soltis PS, Soltis DE (2011) Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant. Curr Biol 21:551–556

    Article  PubMed  CAS  Google Scholar 

  • Buggs RJA, Chamala S, Wu W, Tate JA, Schnable PS, Soltis DS, Soltis PS, Barbazuk WB (2012) Rapid, repeated, and clustered loss of duplicated genes in allopolyploid Tragopogon populations of independent origin. Curr Biol 22:248–252

    Article  PubMed  CAS  Google Scholar 

  • Castillo JM, Ayres DR, Leira-Doce1 P, Bailey J, Blum M, Strong DR, Luque T and Figueroa E (2010) The production of hybrids with high ecological amplitude between exotic Spartina densiflora and native S. maritima in the Iberian Peninsula. Diversity and Distributions, 1–12 doi: 10.1111/j.1472-4642.2010.00673.x

  • Chalupska D, Lee HY, Faris JD, Evrard A, Chalhoub B, Kaselkorn R, Gorniki P (2008) Acc Homeoloci and the evolution of wheat genomes. Proc Natl Acad Sci U S A 105:9691–9696

    Article  PubMed  CAS  Google Scholar 

  • Chang PL, Dilkes B, McMahon M, Comai L, Nuzhdin SV (2010) Homoeolog-specific retention and use in allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome Biol 11:R125. doi:10.1186/gb-2010-11-12-r125

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182: 503–517

    Google Scholar 

  • Chelaifa H, Mahe F, Ainouche M (2010a) Transcriptome divergence between the hexaploid salt-marsh sister species Spartina maritima and Spartina alterniflora (Poaceae). Mol Ecol 19:2050–2063

    Article  PubMed  CAS  Google Scholar 

  • Chelaifa H, Monnier A, Ainouche M (2010b) Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina x townsendii and Spartina anglica (Poaceae). New Phytol 186:161–174 

    Article  PubMed  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  PubMed  CAS  Google Scholar 

  • Chester M, Gallagher JP, Symonds VV, Veruska Cruz da Silva A, da Silva A, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE (2012) Extensive chromosomal variation generated in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci U S A 109:1176–1181

    Article  PubMed  CAS  Google Scholar 

  • Christin P-A, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainend V, Salamini N (2008) Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses. Curr Biol 18:37–43

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes M, Grandont L, Moore G, Chèvre AM, Jenczewski E (2010) Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytol 186:37–45

    Article  Google Scholar 

  • Civille JC, Sayce K, Smith SD, Strong DR (2005) Reconstructing a century of Spartina alterniflora invasion with historical records and contemporary remote sensing. Ecoscience 12:330–338

    Article  Google Scholar 

  • Columbus JT, Cerros-Tlatilpa R, Kinney MS, Siqueiros-Delgado M-E, Bell HL, Griffith MP, Refulio-Rodrigez NF (2007) Phylogenetics of Chloridoideae (Gramineae): a preliminary study based on nuclear internal transcribed spacer and chloroplast trnL-F sequences. Aliso 23:565–579

    Google Scholar 

  • Corbière L (1926) La Spartine de Townsend en Normandie. Bulletin de la société Linéenne de Normandie, 7e série 9:92–117

    Google Scholar 

  • Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166

    Article  Google Scholar 

  • Daehler CC, Strong DR (1997) Hybridization between introduced smooth cordgrass (Spartina alterniflora; Poaceae) and native California cordgrass (S. foliosa) in San Francisco Bay, California. U S A Am J Bot 81:307–313

    Article  Google Scholar 

  • Doyle JJ, Negan EN (2009) Dating the origins of polyploidy events. New Phytol 186:73–85

    Article  PubMed  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  PubMed  CAS  Google Scholar 

  • Ferreira de Carvalho J, Poulain J, Da Silva C, Wincker P, Michon-Coudouel S, Dheilly A, Naquin D, Boutte J, Salmon A, Ainouche M (2013) Transcriptome de novo assembly from Next-Generation Sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity, (in press)

    Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184–193

    Article  PubMed  CAS  Google Scholar 

  • Flagel L, Udall J, Nettleton D, Wendel JF (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6:16

    Article  PubMed  Google Scholar 

  • Flagel LE, Chen L, Chaudhary B, Wendel JF (2009) Coordinated and fine-scale control of homoeologous gene expression in allotetraploid cotton. J Hered 100:487–490

    Article  PubMed  CAS  Google Scholar 

  • Fortuné PM, Schierenbeck K, Ainouche A, Jacquemin J, Wendel JF, Ainouche ML (2007) Evolutionary dynamics of waxy and the origin of hexaploid Spartina species. Mol Phylogenet Evol 43:1040–1055

    Article  PubMed  Google Scholar 

  • Fortuné PM, Schierenbeck K, Ayres D, Bortolus A, Clatrice O, Ainouche ML (2008) The enigmatic invasive Spartina densiflora: a history of hybridizations in a polyploidy context. Mol Ecol 17:4304–4316

    Article  PubMed  Google Scholar 

  • Foucaud (1897) Un Spartina inédit. Ann Soc Sci Nat Char Inf 32:220–222

    Google Scholar 

  • Gaeta RT, Pires J (2010) Homoeologous recombination in allopolyploids: the polyploidy rachet. New Phytol 186:18–27

    Article  PubMed  CAS  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Gedye K, Gonzalez-Hernandez J, Ban Y, Thimmapuram J, Sun F, Wright C, Ali S, Boe A, Owens V (2010) Investigation of the transcriptome of prairie cordgrass, a new cellulosic biomass crop. The Plant Genome 3, 2:69–80

    Google Scholar 

  • Grass Phylogeny Working Group (GPWG) (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Missouri Bot Gard 88:373–457

    Google Scholar 

  • Gray AJ, Benham PEM, Raybould AF (1990) Spartina anglica-the evolutionary and ecological background. In: Gray AJ, Benham PEM (eds) Spartina anglica-a research review. Institute of terrestrial ecology, Natural environment research council, pp 5–10

    Google Scholar 

  • Grover CE, Salmon A, and Wendel JF (2012) Targeted sequence capture as a powerful tool for evolutionary analysis. Am J Bot (in press)

    Google Scholar 

  • Groves H, Groves J (1880) Spartina townsendii nobis. Rep Bot Soc Exch Club Br Id 1:37

    Google Scholar 

  • Guénégou MC, Levasseur JE (1993) La nouvelle espèce amphidiploïde Spartina anglica C.E. Hubbard: son origine, argumentation et implications. Biogeographica 69:125–133

    Google Scholar 

  • Guénégou MC, Citharel J, Levasseur JE (1988) The hybrid status of Spartina anglica (Poaceae). Enzymatic analysis of the species and the presumed parents. Can J Bot 66:1830–1833

    Google Scholar 

  • Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after Interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol 16:1652–1659

    Article  PubMed  CAS  Google Scholar 

  • Hilu KW, Alice LA (2001) A phylogeny of Chloridoideae (Poaceae) based on matK sequences. Syst Bot 26:386–405

    Google Scholar 

  • Hubbard JCE (1968) Grasses, 2nd edn. Penguin Books, London

    Google Scholar 

  • Huskin CL (1930) The origin of S. x townsendii. Genetica 12:531–538

    Article  Google Scholar 

  • IUCN (2000) World’s worst invasive alien species. In: IUCN The World Conservation Union. http://iucn.org

  • Jovet P (1941) Notes systématiques et écologiques sur les Spartines du Sud-Ouest. Bull Soc Bot Fr 88:115–123

    Google Scholar 

  • Kim S, Rayburn AL, Lee DK (2010) Genome size and chromosome analyses in prairie cordgrass. Crop Sci 50:2277–2282

    Article  Google Scholar 

  • Kocsis MG, Hanson AD (2000) Biochemical evidence for two novel enzymes in the biosynthesis of 3-dimethylsulphoniopropionate in Spartina alterniflora. Plant Physiol 123:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Kocsis MG, Nolte KD, Rhodes D, Shen TL, Gage DA, Hanson AD (1998) Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora. Plant Physiol 117:273–281

    Article  PubMed  CAS  Google Scholar 

  • Koh J, Soltis P, Soltis DE (2010) Homoeolog loss and expression changes in natural populations of the recently formed allotetraploid Tragopogon mirus (Asteraceae). BMC Genomics 11:97

    Article  PubMed  Google Scholar 

  • Lambrinos G (2008) Managing invasive ecosystem engineers: the case of Spartina in Pacific estuaries. Theor Ecol Ser 4:299–322

    Article  Google Scholar 

  • Larher F, Hamelin J, Steward GR (1977) L’acide diméthylsulphonium-3-propanoïque de Spartina anglica. Phytochemistry 16:2019–2020

    Article  CAS  Google Scholar 

  • Le Comber SC, Ainouche ML, Kovarik A, Leitch AR (2010) Making a functional diploid: from polysomic to disomic inheritance. New Phytol 186:113–122

    Article  PubMed  CAS  Google Scholar 

  • Lee RW (2003) Physiological adaptations of the invasive cordgrass Spartina anglica to reducing sediments: rhizome metabolic gas fluxes and enhanced O2 and H2S transport. Mar Biol 143:9–15

    Article  CAS  Google Scholar 

  • Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, Srubarova H, Kovarik A, Pires JC, Xiong Z, Leitch AR (2008) Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS ONE 3(10):e3353. doi:10.1371/journal.pone.0003353

    Article  PubMed  Google Scholar 

  • Marchant CJ (1963) Corrected chromosome numbers for Spartina x townsendii and its parent species. Nature 199:929

    Article  Google Scholar 

  • Marchant CJ (1967) Evolution in Spartina (Gramineae): I. the history and morphology of the genus in Britain. Bot J Linn Soc 60(381):1–24

    Article  Google Scholar 

  • Marchant CJ (1968a) Evolution in Spartina (Graminae). III species chromosome numbers and their taxonomic signifiance. Bot J Linn Soc 60(383):411–417

    Article  Google Scholar 

  • Marchant CJ (1968b) Evolution in Spartina (Graminae) II. chromosome basic relationships and the problem of S. x towsendii agg. Bot J Linn Soc 60(383):381–409

    Article  Google Scholar 

  • Marchant CJ (1977) Hybrid characteristics in Spartina x neyrautii Fouc., a taxon rediscovered in northern Spain. Bot J Lin Soc. 74:289–296

    Article  Google Scholar 

  • Maricle BR, Lee RW (2002) Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquat Bot 74:109–120

    Article  Google Scholar 

  • Maricle BR, Crosier JJ, Bussiere BC, Lee RW (2006) Respiratory enzyme activities correlate with anoxia tolerance in saltmarsh grasses. J Exp Mar Biol Ecol 337:30–37

    Article  CAS  Google Scholar 

  • Maricle BR, Koteyeva NK, Voznesenskaya EV, Thomasson JR, Edwards GE (2009) Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae). New Phytol 184:216–233

    Article  PubMed  CAS  Google Scholar 

  • Mobberley DG (1956) Taxonomy and distribution of the genus Spartina. Iowa State Coll J Sci 30:471–574

    Google Scholar 

  • Nasrallah JB, Liu P, Sherman-Broyles S, Schmidt R, Nasrallah ME (2007) Epigenetic mechanisms for breakdown of self-incompatibility in interspecific hybrids. Genetics 175:1965–1973

    Article  PubMed  CAS  Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  PubMed  CAS  Google Scholar 

  • Otte ML, Wilson G, Morris JT, Moran BM (2004) Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. J Exp Bot 55:919–925

    Article  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    Article  PubMed  CAS  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    PubMed  CAS  Google Scholar 

  • Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien M-A, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45

    Article  PubMed  CAS  Google Scholar 

  • Prasad V, Stroemberg CAE, Alimohammadian H, Sahni A (2005) Dinosaur coprolites and the early evolution of grasses and grazers. Science 310:1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Prasad V, Stroemberg CAE, Leaché AD, Samant B, Patnaik R, Tang L, Mohabey DM, Ge S, Sahni A (2011) Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nat Communication 2:480. doi:10.1038/ncomms1482

    Article  CAS  Google Scholar 

  • Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991a) The evolution of Spartina anglica C.E. Hubbard (Gramineae): genetic variation and status of the parental species in Britain. Biol J Linn Soc 44:369–380

    Article  Google Scholar 

  • Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991b) The evolution of S. anglica C.E. Hubbard (Gramineae): origin and genetic variability. Biol J Linnean Soc 43:111–126

    Article  Google Scholar 

  • Renny-Byfield S, Ainouche M, Leitch IJ, Lim KY, Le Comber SC, Leitch AR (2010) Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Ann Bot 105:527–533

    Article  PubMed  Google Scholar 

  • Saint-Yves A (1932) Monographia Spartinarum. Cand 5:19–100

    Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    Article  PubMed  CAS  Google Scholar 

  • Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123–134

    Article  PubMed  CAS  Google Scholar 

  • Skalická K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303

    Article  PubMed  Google Scholar 

  • Sloop C, Ayres DR, Strong DR (2009) The rapid evolution of self-fertility in Spartina hybrids (Spartina alterniflora × foliosa) invading San Francisco Bay, CA. Biol Invasions 11:1131–1144

    Article  Google Scholar 

  • Slotkin K, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE et al (2013) Polyploidy and genome evolution. In: Soltis PS, Soltis DE (eds) The early stages of polyploidy: rapid and repeated evolution in Tragopogon. Springer, Heidelberg

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Straub SCK, Pfeil BE, Doyle JJ (2003) Testing the polyploid past of soybean using a low-copy nuclear gene-Is Glycine (Fabaceae: Papilionoideae) an auto- or allopolyploid? Mol Phylogenet Evol 39:580–584

    Article  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lode M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ et al (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    Article  PubMed  CAS  Google Scholar 

  • Tate JA, Joshi P, Soltis KA, Soltis PS, Soltis DE (2009) On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae). BMC Plant Biol 9:80. doi:10.1186/1471-2229-9-80

    Article  PubMed  Google Scholar 

  • Thompson JD, McNeilly T, Gray AJ (1991) Population variation in Spartina anglica C. E. Hubbard. I. Evidence from a common garden experiment. New Phytol 117:115–128

    Article  Google Scholar 

  • Triplet P, Gallicé A (2008) Les plantes envahissantes du littoral atlantique: le cas de la Spartine anglaise (Spartina anglica). Aestuaria 13 Aestuarium– Le Forum des Marais Atlantiques eds

    Google Scholar 

  • Udall JA, Swanson JM, Nettleton D, Percifield RJ, Wendel JF (2006) A novel approach for characterizing expression levels of genes duplicated by polyploidy. Genetics 173:1823–1827

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, Maere S, Meyer A (2009) OPINION the evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732

    Article  PubMed  Google Scholar 

  • Warner DA, Edwards GE (1993) Effects of polyploidy on photosynthesis. Photosynthetis research 35:135–147

    Article  CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Gouy M, Yang Y-W, Sharpt PM, Li W-H (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci U S A 86:6201–6205

    Article  PubMed  CAS  Google Scholar 

  • Yannic G, Baumel A, Ainouche ML (2004) Uniformity of the nuclear and chloroplast genomes of Spartina maritima (Poaceae) a salt marshes species in decline along the Western European Coast. Heredity 93:182–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work benefited from the financial support of the Centre National de la Recherche Scientifique (CNRS), University of Rennes 1, the French National Research Agency (ANR), Region Bretagne, Genoscope, and from the Biogenouest (Transcriptomics and Environmental Genomics) platform facilities. P. Wincker, J. Poulain, Corinne Da Silva, O. Lima, S. Coudouel, D. Naquin, A. Deillhy are thanked for their contribution to the 454 pyrosequencing

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ainouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ainouche, M., Chelaifa, H., Ferreira, J., Bellot, S., Ainouche, A., Salmon, A. (2012). Erratum From—Polyploid Evolution in Spartina: Dealing with Highly Redundant Hybrid Genomes. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_12

Download citation

Publish with us

Policies and ethics