Skip to main content

Transparency Improvement in Haptic Devices with a Torque Compensator Using Motor Current

  • Conference paper
Haptics: Perception, Devices, Mobility, and Communication (EuroHaptics 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7282))

Abstract

Transparency of a haptic interface can be improved by minimizing the effects of inertia and friction through the use of model based compensators. However, the performance with these algorithms is limited due to the estimation errors in the system model and in the velocity and acceleration from quantized encoder data. This paper contributes a new torque compensator based on motor current to improve transparency. The proposed method was tested experimentally in time and frequency domains by means of an excitation motor attached at the user side of the device. The excitation motor enabled evaluation of the algorithms with smooth trajectories and high frequencies, which cannot be generated by user hand. Experimental results showed that the algorithm significantly improves transparency and doubles the transparency bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Transactions on Robotics and Automation 9(3), 624–637 (1993)

    Article  Google Scholar 

  2. McJunkin, S.T.: Transparency Improvement for Haptic Interfaces. PhD. Thesis (May 2007)

    Google Scholar 

  3. Vlachos, K., Papadopoulos, E.: Transparency maximization methodology for haptic devices. IEEE/ASME Transactions on Mechatronics 11(3), 249–255 (2006)

    Article  Google Scholar 

  4. Colgate, J.E.: Robust impedance shaping telemanipulation. IEEE Transactions on Robotics and Automation 9(4), 374–384 (1993)

    Article  Google Scholar 

  5. Fite, K.B., Speich, J.E., Goldfarb, M.: Transparency and Stability Robustness in Two-Channel Bilateral Teleoperation. Journal of Dynamic Systems, Measurement, and Control 123, 400–407 (2001)

    Article  Google Scholar 

  6. Lee, H.K., Chung, M.J.: Adaptive Controller of a Master-Slave System for Transparent Teleoperation. Journal of Robotic Systems 15(8), 465–475 (1998)

    Article  MATH  Google Scholar 

  7. Hashtrudi-Zaad, K., Salcudean, S.E.: Analysis of Control Architectures for Teleoperation Systems with Impedance/Admittance Master and Slave Manipulators. The International Journal of Robotic Research 20(6), 419–445 (2001)

    Article  Google Scholar 

  8. Carignan, C.R., Cleary, K.R.: Closed-Loop Force Control for Haptic Simulation of Virtual Environments. The Electronic Journal of Haptics Research 1(2), 1–14 (2000)

    Google Scholar 

  9. Frisoli, A., Sotgiu, E., Avizzano, C.A., Checcacci, D., Bergamasco, M.: Force-based Impedance Control of a Haptic Master System for Teleoperation. Sensor Review 24(1), 42–50 (2004)

    Article  Google Scholar 

  10. Bernstein, N.L., Lawrence, D.A., Pao, L.Y.: Friction Modeling and Compensation for Haptic Interfaces. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 290–295 (2005)

    Google Scholar 

  11. McJunkin, S.T., O’Malley, M.K., Speich, J.E.: Transparency of a Phantom Premium Haptic Interface for Active and Passive Human Interaction. In: American Control Conference, pp. 3060–3065 (2005)

    Google Scholar 

  12. McJunkin, S.T., Li, Y., O’Malley, M.K.: Human-Machine Admittance and Transparency Adaptation in Passive User Interaction with a Haptic Interface. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 283–289 (2005)

    Google Scholar 

  13. Gil, J.J., Sanchez, E.: Control Algorithms for Haptic Interaction and Modifying the Dynamical Behavior of the Interface. In: 2nd International Conference on Enactive Interfaces (2005)

    Google Scholar 

  14. Bernstein, N.L., Lawrence, D.A., Pao, L.Y.: Friction Modeling and Compensation for Haptic Interfaces. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 290–295 (2005)

    Google Scholar 

  15. Hollerbach, J., Khalil, W., Gautier, M.: Model Identification. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 321–344. Springer (2008)

    Google Scholar 

  16. Liu, G.: On velocity estimation using position measurements. In: American Control Conference, vol. 2, pp. 1115–1120 (2002)

    Google Scholar 

  17. Chan, S.P.: Velocity estimation for robot manipulators using neural network. Journal of Intelligent and Robotic Systems 23, 147–163 (1998)

    Article  MATH  Google Scholar 

  18. Yusivar, F., Hamada, D., Uchida, K., Wakao, S., et al.: A new method of motor speed estimation using fuzzy logic algorithm. In: International Conference of Electric Machine Drives, pp. 278–280 (1999)

    Google Scholar 

  19. Janabi-Sharifi, F., Hayward, V., Chen, C.-S.J.: Discrete-Time Adaptive Windowing for Velocity Estimation. IEEE Transaction on Control System Technology 8(6) (2000)

    Google Scholar 

  20. Kilic, E., Baser, O., Dolen, M., Konukseven, E.I.: Enhanced adaptive windowing technique for velocity and acceleration estimation using incremental position encoders. In: IEEE International Conference on Signal and Electronic Systems, Gliwice, Poland (2010)

    Google Scholar 

  21. Baser, O., Kilic, E., Konukseven, E.I., Dolen, M.: A hybrid technique to estimate velocity and acceleration using low-resolution optical incremental encoders. In: IEEE International Conference on Signal and Electronic Systems, Gliwice, Poland (2010)

    Google Scholar 

  22. Fite, K., Speich, J., Goldfarb, M.: Loop Shaping for Transparency and Stability Robustness in Bilateral Telemanipulation. IEEE Trans. Rob. Autom. 20(3), 620–624 (2004)

    Article  Google Scholar 

  23. Gupta, A., O’Malley, M.K.: Disturbance-Observer-Based Force Estimation for Haptic Feedback. Journal of Dynamic Systems, Measurement, and Control 133(1), 014505 (4 pages) (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baser, O., Konukseven, E.I., Gurocak, H. (2012). Transparency Improvement in Haptic Devices with a Torque Compensator Using Motor Current. In: Isokoski, P., Springare, J. (eds) Haptics: Perception, Devices, Mobility, and Communication. EuroHaptics 2012. Lecture Notes in Computer Science, vol 7282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31401-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31401-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31400-1

  • Online ISBN: 978-3-642-31401-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics