Skip to main content

The Clinical Commissioning of Beams for Neutron Capture Therapy

  • Chapter
  • First Online:
Neutron Capture Therapy

Abstract

The clinical commissioning of beams for neutron capture therapy involves the measurement and analysis of a large amount of data in various geometries and using various detectors. The process as such is akin to that in the conventional photon and electron radiotherapy field, while the tools, methods and considerations in the field of neutron capture therapy are different. This chapter provides an introduction and a summary of the methods that presently constitute the common practice for the dosimetry of epithermal neutron beams intended for use in neutron capture therapy. Special care is taken in order to allow adherence to conventional radiotherapy terminology and the use of detectors calibrated at standards laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahnesjö A, Aspradakis MM (1999) Dose calculations for external photon beams in ­radiotherapy. Phys Med Biol 44(11):99–155

    Article  Google Scholar 

  2. Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, Rogers DWO (1999) AAPM Task Group 51: protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26:1847–1870

    Article  PubMed  CAS  Google Scholar 

  3. Andreo P, Cunningham J C, Hohlfeld K, Svensson H (1987) Absorbed dose determination in photon and electron beams: an international code of practice. IAEA Technical Report Series No. 277. IAEA, Vienna

    Google Scholar 

  4. Andreo P, Burns DT, Hohlfeld K, Huq MS, Kanai T, Laitano F, Smyth VG, Vynckier S (2000a) Absorbed dose determination in external beam radiotherapy: an international Code of Practice for dosimetry based on standards of absorbed dose to water. IAEA Technical Report Series No. 398. IAEA, Vienna

    Google Scholar 

  5. Andreo P, Izewska J, Shortt K and Vynckier S (2000b) Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. IAEA Technical Report Series No. 430. IAEA, Vienna

    Google Scholar 

  6. Aschan C, Toivonen M, Savolainen S, Seppälä T, Auterinen I (1999) Epithermal neutron beam dosimetry with thermoluminescence dosimeters for boron neutron capture therapy. Radiat Prot Dosim 81(1):47–56

    Article  CAS  Google Scholar 

  7. Aschan C, Toivonen M, Savolainen S, Stecher-Rasmussen F (1999) Experimental correction for thermal neutron sensitivity of gamma ray TL dosimeters irradiated a BNCT beams. Radiat Prot Dosim 82:65–69

    Article  CAS  Google Scholar 

  8. Auterinen I, Hiismäki P, Kotilouto P, Rosenberg RJ, Salmenhaara S, Seppälä T, Séren T, Tanner V, Aschan C, Kortesniemi M, Kosunen A, Lampinen J, Savolainen S, Toivonen M, Välimäki P (2001) Metamorphosis of a 35 year-old TRIGA reactor into a modern BNCT facility. In: Hawthorne MF, Shelly K, Weirsema RJ (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New York, pp 267–275

    Chapter  Google Scholar 

  9. Auterinen I, Serén T, Kotiluoto P, Uusi-Simola J, Savolainen S (2004) Quality assurance procedures for the neutron beam monitors at the FiR 1 BNCT facility. Appl Radiat Isot 61(5):1015–1019

    Article  PubMed  CAS  Google Scholar 

  10. Auterinen I, Serén T, Anttila K, Kosunen A, Savolainen S (2004) Measurement of free beam neutron spectra at eight BNCT facilities worldwide. Appl Radiat Isot 61(5):1021–1026

    Article  PubMed  CAS  Google Scholar 

  11. Bisceglie E, Colangelo P, Colonna N, Santorelli P, Variale V (2000) On the optimal energy of epithermal neutron beams for BNCT. Phys Med Biol 45:49–58

    Article  Google Scholar 

  12. Brahme A et al (1988) Accuracy requirements and quality assurance of external beam therapy with photons and electrons. Acta Oncol. (Suppl 1)

    Google Scholar 

  13. Briesmeister JF (2000) MCNP – a general Monte Carlo N-particle transport code, Version 4C, LA-12625-M, Los Alamos National Laboratory (LANL, NM)

    Google Scholar 

  14. Coderre JA, Morris GM (1999) The radiation biology of boron neutron capture therapy. Radiat Res 151:1–18

    Article  PubMed  CAS  Google Scholar 

  15. d’Errico F, Giusti V, Nava E, Reginatto M, Curzio G, Capala J (2002) Fast neutron spectrometry of BNCT beams. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 1139–1144

    Google Scholar 

  16. Giusti V, Munck af Rosenschöld PM, Sköld K, Montagnini B, Capala J (2003) Monte Carlo model of the Studsvik BNCT clinical beam: description and validation. Med Phys 30(12):3107–3117

    Article  PubMed  Google Scholar 

  17. Goorley JT, Kiger WS III, Zamenhof RG (2000) Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models. Med Phys 29(22):145–156

    Google Scholar 

  18. Hall EJ (1994) Radiobiology for the radiologist, 4th edn. J.B. Lippincott Company, Philadelphia

    Google Scholar 

  19. Harling OK, Roberts RA, Moulin DJ, Rogus RD (1995) Head phantoms for boron neutron capture therapy. Med Phys 22(5):579–583

    Article  PubMed  CAS  Google Scholar 

  20. Harling OK, Riley KJ, Binns PJ, Kiger WS III, Capala J, Giusti V, Munck af Rosenschöld PM, Sköld K, Auterinen I, Seren T, Kotiluoto P, Uusi-Simola J, Seppälä T, Marek M, Vierbl L, Spurny F, Stecher-Rasmussen F, Voorbrak WP, Morrissey J, Moss RL, Calzetta Larrieu O, Blaumann H, Longhino J (2002) International dosimetry exchange: a status report. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 333–340

    Google Scholar 

  21. International Commission on Radiation Units and Measurements (ICRU) (1976) Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. ICRU Report No. 24. ICRU Publications, Bethesda

    Google Scholar 

  22. International Commission on Radiation Units and Measurements (ICRU) (1977) Neutron dosimetry for medicine and biology. ICRU Report No. 26. ICRU Publications, Bethesda

    Google Scholar 

  23. International Commission on Radiation Units and Measurements (ICRU) (1989) Clinical neutron dosimetry part I: determination of absorbed dose in a patient treated by external beams of fast neutrons. ICRU Report No. 45. ICRU Publications, Bethesda

    Google Scholar 

  24. Jansen JTM, Raaijmakers CPJ, Mijnheer BJ, Zeotelief J (1997) Relative neutron sensitivity of tissue-equivalent ionization chambers in an epithermal neutron beam for boron neutron capture therapy. Radiat Prot Dosim 70:27–32

    Article  CAS  Google Scholar 

  25. Johnsson SA, Ceberg CP, Knöös T, Nilsson P (2000) On beam quality and stopping power ratios for high-energy x-rays. Phys Med Biol 45(10):2733–2745

    Article  PubMed  CAS  Google Scholar 

  26. Kashino G, Fukutani S, Suzuki M, Liu Y, Nagata K, Masunaga S, Maruhashi A, Tanaka H, Sakurai Y, Kinashi Y, Fujii N, Ono K (2009) A simple and rapid method for measurement of (10)B-para-boronophenylalanine in the blood for boron neutron capture therapy using fluorescence spectrophotometry. J Radiat Res (Tokyo) 50(4):377–382

    Article  CAS  Google Scholar 

  27. Kiger WS III, Sakamoto S, Harling OK (1999) Neutronic design of a fission converter-based neutron beam for neutron capture therapy. Nucl Sci Eng 131:1–22

    CAS  Google Scholar 

  28. Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T (2009) Task Group 142 report: quality assurance of medical accelerators. American Association of Physicists in Medicine. Med Phys 36(9):4197–4212

    Article  PubMed  Google Scholar 

  29. Knoll GF (2000) Radiation detection and measurement. Wiley, New York

    Google Scholar 

  30. Kobayashi T, Kanda K (1983) Microanalysis system of ppm-order 10B concentration in tissue for neutron capture therapy by prompt gamma spectrometry. Nucl Instr Meth 204:525–531

    Article  CAS  Google Scholar 

  31. Kobayashi T, Sakurai Y, Ishikawa M (2000) A noninvasive dose estimation system for clinical BNCT based on PG-SPECT – conceptual study and fundamental experiments using HPGe and CdTe semiconductor detectors. Med Phys 27(9):2124–2132

    Article  PubMed  CAS  Google Scholar 

  32. Koivunoro H, Auterinen I, Kosunen A, Kotiluoto P, Seppälä T, Savolainen S (2003) Computational study of the required dimensions for standard sized phantoms in boron neutron capture therapy dosimetry. Phys Med Biol 48(21):N291–N300

    Article  PubMed  CAS  Google Scholar 

  33. Komeda M, Kumada H, Ishikawa M, Nakamura T, Yamamoto K, Matsumura A (2009) Performance measurement of the scintillator with optical fiber detector for boron neutron capture therapy. Appl Radiat Isot 67(7–8 Suppl):S254–7

    Article  PubMed  CAS  Google Scholar 

  34. Kosunen A, Kortesniemi M, Ylä-Mella H, Seppälä T, Lampinen J, Serén T, Auterinen I, Järvinen H, Savolainen S (1999) Twin ionization chambers for dose determinations in phantom in an epithermal neutron beam. Radiat Prot Dosim 81:187–194

    Article  Google Scholar 

  35. Kouloulias VE (2003) Quality assurance in radiotherapy. Eur J Cancer 39(4):415–422

    Article  PubMed  CAS  Google Scholar 

  36. Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, Palta JR, Purdy JA, Reinstein LE, Svensson GK, Weller M, Wingfield L (1994) Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee task group 40. Med Phys 21(4):581–618

    Article  PubMed  CAS  Google Scholar 

  37. Laakso J, Kulvik M, Ruokonen I, Vahatalo J, Zilliacus R, Farkkila M, Kallio M (2001) Atomic emission method for total boron in blood during neutron-capture therapy. Clin Chem 47(10):1796–1803

    PubMed  CAS  Google Scholar 

  38. Linko S, Revitzer H, Zilliacus R, Kortesniemi M, Kouri M, Savolainen S (2008) Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy. Scand J Clin Lab Invest 68(8):696–702

    Article  PubMed  CAS  Google Scholar 

  39. Liu HB, Greenberg DD, Capala J, Wheeler FJ (1996) An improved neutron collimator for brain tumor irradiations in clinical boron neutron capture therapy. Med Phys 23:2051–2060

    Article  PubMed  CAS  Google Scholar 

  40. Marek M, Viererbl L, Burian J, Jansky B (2001) Determination of the geometric and spectral characteristics of BNCT beam (neutron and gamma-ray). In: Hawthorne MF, Shelly K, Weirsema RJ (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New York, pp 381–399

    Chapter  Google Scholar 

  41. Mijnheer BJ, Battermann JJ, Wambersie A (1987) What degree of accuracy is required and can be achieved in photon and neutron therapy? Radiother Oncol 8:237–252

    Article  PubMed  CAS  Google Scholar 

  42. Moro D, Colautti P, Lollo M, Esposito J, Conte V, De Nardo L, Ferretti A, Ceballos C (2009) BNCT dosimetry performed with a mini twin tissue-equivalent proportional counters (TEPC). Appl Radiat Isot 67(7–8 Suppl):S171–S174

    Article  PubMed  CAS  Google Scholar 

  43. Morris GM, Coderre JA, Hopewell JW, Micca PL, Rezvani M (1994) Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium. Radiother Oncol 32(2):144–153

    Article  PubMed  CAS  Google Scholar 

  44. Morris GM, Coderre JA, Bywaters A, Whitehouse E, Hopewell JW (1996) Boron neutron capture therapy irradiation of the rat spinal cord: histopathological evidence of a vascular-mediated pathogenesis. Radiat Res 146:313–320

    Article  PubMed  CAS  Google Scholar 

  45. Morris GM, Micca PL, Nawrocky MM, Weissfloch LE, Coderre JA (2002) Long-term infusions of p-boronophenylalanine for boron neutron capture therapy: evaluation using rat brain tumor and spinal cord models. Radiat Res 158(6):743–752

    Article  PubMed  CAS  Google Scholar 

  46. Moss RL, Aizawa O, Beynon D, Brugger R, Constantine G, Harling O, Liu HB, Watkins P (1997) The requirements and development of neutron beams for neutron capture therapy of brain cancer. J Neurooncol 33(1–2):27–40

    Article  PubMed  CAS  Google Scholar 

  47. Mukai K, Nakagawa Y, Matsumoto K (1995) Prompt gamma ray spectrometry for in vivo measurement of boron-10 concentration in rabbit brain tissue. Neurol Med Chir (Tokyo) 35(12):855–860

    Article  CAS  Google Scholar 

  48. Munck af Rosenschöld PM, Verbakel WF, Ceberg CP, Stecher-Rasmussen F, Persson BRR (2001) Toward clinical application of prompt gamma spectroscopy for in-vivo monitoring of boron uptake in boron neutron capture therapy. Med Phys 28(5):787–795

    Article  PubMed  Google Scholar 

  49. Munck af Rosenschöld P, Ceberg CP, Giusti V, Andreo P (2002) Photon quality correction factors for ionization chambers in an epithermal neutron beam. Phys Med Biol 47(14):2397–2409

    Article  PubMed  Google Scholar 

  50. Munck af Rosenschöld P, Giusti V, Ceberg CP, Capala J, Sköld K, Persson BR (2003) Reference dosimetry at the neutron capture therapy facility at Studsvik. Med Phys 30(7):1569–1579

    Article  PubMed  Google Scholar 

  51. Munck af Rosenschöld P, Capala J, Ceberg CP, Giusti V, Salford LG, Persson BR (2004) Quality assurance of patient dosimetry in boron neutron capture therapy. Acta Oncol 43(4):404–411

    Article  PubMed  Google Scholar 

  52. Nigg DW (2003) Computational dosimetry and treatment planning considerations for neutron capture therapy. J Neurooncol 62:75–86

    PubMed  Google Scholar 

  53. Nigg DW, Wheeler FJ, Wessol DE, Capala J, Chadha M (1997) Computational dosimetry and treatment planning for boron neutron capture therapy. J Neurooncol 33:93–104

    Article  PubMed  CAS  Google Scholar 

  54. Raaijmakers CPJ, Konijnenberg MW, Verhagen VH, Mijnheer BJ (1995) Determination of dose components in an epithermal neutron beam for boron neutron capture therapy. Med Phys 22:321–329

    Article  PubMed  CAS  Google Scholar 

  55. Raaijmakers CPJ, Kronijenberg MW, Dewit L, Haritz D, Huiskamp R, Philipp K, Siefert A, Stecher-Rasmussen F, Mijnheer BJ (1995) Monitoring of blood-10B concentration for boron neutron capture therapy using prompt gamma-ray analysis. Acta Oncol 34:517–523

    Article  PubMed  CAS  Google Scholar 

  56. Raaijmakers CP, Nottelman EL, Konijnenberg MW, Mijnheer BJ (1996) Dose monitoring for boron neutron capture therapy using a reactor-based epithermal neutron beam. Phys Med Biol 41(12):2789–2797

    Article  PubMed  CAS  Google Scholar 

  57. Raaijmakers CP, Konijnenberg MW, Mijnheer BJ (1997) Clinical dosimetry of an epithermal neutron beam for neutron capture therapy: dose distributions under reference conditions. Int J Radiat Oncol Biol Phys 37(4):941–951

    Article  PubMed  CAS  Google Scholar 

  58. Raaijmakers CP, Bruinvis IA, Nottelman EL, Mijnheer BJ (1998) A fast and accurate treatment planning method for boron neutron capture therapy. Radiother Oncol 46(3):321–332

    Article  PubMed  CAS  Google Scholar 

  59. Raaijmakers CPJ, Nottelman EL, Mijnheer BJ (2000) Phantom materials for boron neutron capture therapy. Phys Med Biol 45(8):2353–2361

    Article  PubMed  CAS  Google Scholar 

  60. Rassow J, Stecher-Rasmussen F, Voorbraak W, Moss R, Vroegindeweij C, Hideghéty K, Sauerwien W (2001) Comparison of quality assurance for performance and safety characteristics for boron neutron capture therapy in Petten/NL with medical electron accelerators. Radiat Oncol 59:99–108

    Article  CAS  Google Scholar 

  61. Riley KJ, Binns PJ, Greenberg DD, Harling OK (2002) A physical dosimetry intercomparison for BNCT. Med Phys 29(5):898–904

    Article  PubMed  CAS  Google Scholar 

  62. Riley KJ, Binns PJ, Harling OK (2003) Performance characteristics of the MIT fission converter based epithermal neutron beam. Phys Med Biol 48(7):943–958

    Article  PubMed  CAS  Google Scholar 

  63. Rogus RD, Harling OK, Yanch JC (1994) Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor. Med Phys 21:1611–1625

    Article  PubMed  CAS  Google Scholar 

  64. Ryynänen PM, Kortesniemi M, Coderre JA, Diaz AZ, Hiismäki P, Savolainen S (2000) Models for estimation of the (10)B concentration of BPA-fructose complex infusion in patients during epithermal neutron irradiation in BNCT. Int J Radiat Oncol Biol Phys 48:1145–1154

    Article  PubMed  Google Scholar 

  65. Seppälä T, Vähätalo V, Auterinen I, Kosunen A, Nigg DW, Wheeler FJ, Savolainen S (1999) Modelling of brain tissue substitutes for phantom materials in neutron capture therapy (NCT) dosimetry. Radiat Phys Chem 55:239–246

    Article  Google Scholar 

  66. Seppälä T, Auterinen I, Aschan C, Serén T, Benczik J, Snellman M, Huiskamp R, Ramadan UA, Kankaranta L, Joensuu H, Savolainen S (2002) In-vivo dosimetry of the dog irradiations at the Finnish BNCT facility. Med Phys 29(11):2629–2640

    Article  PubMed  Google Scholar 

  67. Spevacek V, Marek M, Dvorak P, Novotny ml J, Viererbl L, Flibor S (2002) Application of gel dosimeter in three-dimensional dosimetry for boron neutron capture therapy. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 359–365

    Google Scholar 

  68. Svantesson E, Capala J, Markides KE, Pettersson J (2002) Determination of boron-containing compounds in urine and blood plasma from boron neutron capture therapy patients. The importance of using coupled techniques. Anal Chem 74(20):5358–5363

    Article  PubMed  CAS  Google Scholar 

  69. Uusi-Simola J, Heikkinen S, Kotiluoto P, Serén T, Seppälä T, Auterinen I, Savolainen S (2007) MAGIC polymer gel for dosimetric verification in boron neutron capture therapy. J Appl Clin Med Phys 8(2):114–123

    PubMed  Google Scholar 

  70. Verbakel WFAR (2001) Validation of the scanning -gamma-ray telescope for in vivo dosimetry and boron measurements during BNCT. Phys Med Biol 46(12):3269–3285

    Article  PubMed  CAS  Google Scholar 

  71. Voorbraak WP, Järvinen H, Auterinen I, Gonçalves IC, Green S, Kosunen A, Marek M, Mijnheer BJ, Moss RL, Rassow J, Sauerwein W, Savolainen S, Serén T, Stecher Rasmussen F, Uusi-Simola J, Zsolnay EM (2003) Recommendations for the dosimetry of boron neutron capture therapy (BNCT). The JRC, Petten, the Netherlands, 2003

    Google Scholar 

  72. Wittig A, Moss RL, Stecher-Rasmussen F, Appelman K, Rassow J, Roca A, Sauerwein W (2005) Neutron activation of patients following boron neutron capture therapy of brain tumors at the high flux reactor (HFR) Petten (EORTC Trials 11961 and 11011). Strahlenther Onkol 181(12):774–782

    Article  PubMed  Google Scholar 

  73. Wojnecki C, Green S (2001) A computational study into the use of polyacrylamide gel and A-150 plastic as brain tissue substitutes for boron neutron capture therapy. Phys Med Biol 46(5):1399–1405

    Article  PubMed  CAS  Google Scholar 

  74. Zamenhof RG, Murray BW, Brownell GL, Wellum GR, Tolpin EI (1975) Boron neutron capture therapy for the treatment of cerebral gliomas: I. Theoretical evaluation of the efficacy of various neutron beams. Med Phys 2:47–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Munck af Rosenschöld M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

af Rosenschöld, P.M. (2012). The Clinical Commissioning of Beams for Neutron Capture Therapy. In: Sauerwein, W., Wittig, A., Moss, R., Nakagawa, Y. (eds) Neutron Capture Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31334-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31334-9_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31333-2

  • Online ISBN: 978-3-642-31334-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics