Skip to main content

PEG/scCO2 Biphasic Solvent System

  • Chapter
  • First Online:
  • 825 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

PEG is an inexpensive, non-volatile and environmentally benign solvent, which represents an interesting reaction medium for conventional solvent replacement. More importantly, PEG could be regarded as a CO2-philic material through interaction of CO2 with the oxygen atoms of the ether linkages of PEG. In other words, “CO2-expansion” effect could lead to changes in the physical properties of the liquid phase mixture including lowered viscosity and increased gas/liquid diffusion rates. This chapter describes various functions of PEGs in catalytic reactions involving PEG/scCO2 biphasic solvent system, including PEG as a green replacement for organic solvents for the RhCl(PPh3)3-catalyzed hydrogenation of styrene to ethyl benzene, lipase-catalyzed acylation of alcohols, aerobic oxidation of alcohols and olefins, hydrogenation of α, β-unsaturated aldehydes (Sect. 3.1); PEG as PTC for catalytic reduction reactions (Sect. 3.2); PEG as surfactant for Aldol- and Mannich-type reactions (Sect. 3.3); PEG as support for oxidation of alcohols, hydroformylation of olefins (Sect. 3.4); and PEG as radical initiator for formylation of alcohols benzylic C=C cleavage reactions (Sect. 3.5).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mallat T, Baiker A (2011) Reactions in “sacrificial” solvents. Catal Sci Technol 1(9):1572–1583

    Article  CAS  Google Scholar 

  2. Bhanage BM, Shirai M, Arai M et al (1999) Multiphase catalysis using water-soluble metal complexes in supercritical carbon dioxide. Chem Commun 14:1277–1278

    Article  Google Scholar 

  3. Bhanage BM, Ikushima Y, Shirai M et al (1999) Heck reactions using water-soluble metal complexes in supercritical carbon dioxide. Tetrahedron Lett 40(35):6427–6430

    Article  CAS  Google Scholar 

  4. Jacobson GB, Lee CT, Johnston KP et al (1999) Enhanced catalyst reactivity and separations using water/carbon dioxide emulsions. J Am Chem Soc 121(50):11902–11903

    Article  CAS  Google Scholar 

  5. Jason Bonilla R, James BR, Jessop PG (2000) Colloid-catalysed arene hydrogenation in aqueous/supercritical fluid biphasic media. Chem Commun 11:941–942

    Article  Google Scholar 

  6. Blanchard LA, Hancu D, Beckman EJ et al (1999) Green processing using ionic liquids and CO2. Nature 399(6731):28–29

    Article  Google Scholar 

  7. Blanchard LA, Brennecke JF (2000) Recovery of organic products from ionic liquids using supercritical carbon dioxide. Ind Eng Chem Res 40(1):287–292

    Article  Google Scholar 

  8. Brown RA, Pollet P, McKoon E et al (2001) Asymmetric hydrogenation and catalyst recycling using ionic liquid and supercritical carbon dioxide. J Am Chem Soc 123(6):1254–1255

    Article  CAS  Google Scholar 

  9. Liu F, Abrams MB, Baker RT et al (2001) Phase-separable catalysis using room temperature ionic liquids and supercritical carbon dioxide. Chem Commun 5:433–434

    Article  Google Scholar 

  10. Bösmann A, Franciò G, Janssen E et al (2001) Activation, tuning, and immobilization of homogeneous catalysts in an ionic liquid/compressed CO2 continuous-flow system. Angew Chem Int Ed 40(14):2697–2699

    Article  Google Scholar 

  11. Sellin MF, Webb PB, Cole-Hamilton DJ (2001) Continuous flow homogeneous catalysis: hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic mixtures. Chem Commun 8:781–782

    Article  Google Scholar 

  12. Heldebrant DJ, Jessop PG (2003) Liquid poly(ethylene glycol) and supercritical carbon dioxide: A benign biphasic solvent system for use and recycling of homogeneous catalysts. J Am Chem Soc 125(19):5600–5601

    Article  CAS  Google Scholar 

  13. Hou Z, Theyssen N, Brinkmann A et al (2005) Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew Chem Int Ed 44(9):1346–1349

    Article  CAS  Google Scholar 

  14. Reetz MT, Wiesenhofer W (2004) Liquid poly(ethylene glycol) and supercritical carbon dioxide as a biphasic solvent system for lipase-catalyzed esterification. Chem Commun 23:2750–2751

    Article  Google Scholar 

  15. Sheldon RA, Arends IWCE, ten Brink G-J et al (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35(9):774–781

    Article  CAS  Google Scholar 

  16. Jacques M (2003) Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron 59(31):5789–5816

    Article  Google Scholar 

  17. Zhan B-Z, Thompson A (2004) Recent developments in the aerobic oxidation of alcohols. Tetrahedron 60(13):2917–2935

    Article  CAS  Google Scholar 

  18. Kovtun G, Kameneva T, Hladyi S et al (2002) Oxidation, redox disproportionation and chain termination reactions catalysed by the Pd-561 giant cluster. Adv Synth Catal 344(9):957–964

    Article  CAS  Google Scholar 

  19. Choi K-M, Akita T, Mizugaki T et al (2003) Highly selective oxidation of allylic alcohols catalysed by monodispersed 8-shell Pd nanoclusters in the presence of molecular oxygen. New J Chem 27(2): 

    Article  Google Scholar 

  20. Uozumi Y, Nakao R (2003) Catalytic oxidation of alcohols in water under atmospheric oxygen by use of an amphiphilic resin-dispersion of a nanopalladium catalyst. Angew Chem Int Ed 42(2):194–197

    Article  CAS  Google Scholar 

  21. Iwasawa T, Tokunaga M, Obora Y et al (2004) Homogeneous palladium catalyst suppressing Pd black formation in air oxidation of alcohols. J Am Chem Soc 126(21):6554–6555

    Article  CAS  Google Scholar 

  22. G-Jt Brink, Arends IWCE, Sheldon RA (2000) Green, catalytic oxidation of alcohols in water. Science 287(5458):1636–1639

    Article  Google Scholar 

  23. Mori K, Yamaguchi K, Hara T et al (2002) Controlled synthesis of hydroxyapatite-supported palladium complexes as highly efficient heterogeneous catalysts. J Am Chem Soc 124(39):11572–11573

    Article  CAS  Google Scholar 

  24. He J, Wu T, Jiang T et al (2008) Aerobic oxidation of secondary alcohols to ketones catalyzed by cobalt(II)/ZnO in poly(ethylene glycol)/CO2 system. Catal Commun 9(13):2239–2243

    Article  CAS  Google Scholar 

  25. Gourgouillon D, Nunes da Ponte M (1999) High pressure phase equilibria for poly(ethylene glycol)s + CO2: experimental results and modelling. Phys Chem Chem Phys 1(23):5369–5375

    Article  CAS  Google Scholar 

  26. Sobkowiak A, Sawyer DT (1991) Cobalt(II)-induced activation of dioxygen for the dehydrogenation of N-methylanilines and benzyl alcohol. J Am Chem Soc 113(25):9520–9523

    Article  CAS  Google Scholar 

  27. Jessop PG, Ikariya T, Noyori R (1999) Homogeneous catalysis in supercritical fluids. Chem Rev 99(2):475–494

    Article  CAS  Google Scholar 

  28. Musie G, Wei M, Subramaniam B et al (2001) Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coord Chem Rev 219–221:789–820

    Article  Google Scholar 

  29. Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluids 28(2–3):121–191

    Article  CAS  Google Scholar 

  30. Wang Z-Y, Jiang H-F, Qi C-R et al (2005) PS-BQ: an efficient polymer-supported cocatalyst for the Wacker reaction in supercritical carbon dioxide. Green Chem 7(8):582–585

    Article  CAS  Google Scholar 

  31. Karakhanov E, Buchneva T, Maximov A et al (2002) Substrate selectivity in byphasic Wacker-oxidation of alkenes in the presence of water-soluble calixarenes. J Mol Catal A: Chem 184(1–2):11–17

    Article  CAS  Google Scholar 

  32. Mitsudome T, Umetani T, Nosaka N et al (2006) Convenient and efficient Pd-catalyzed regioselective oxyfunctionalization of terminal olefins by using molecular oxygen as sole reoxidant. Angew Chem Int Ed 45(3):481–485

    Article  CAS  Google Scholar 

  33. Hou Z, Han B, Gao L et al (2002) Wacker oxidation of 1-hexene in 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), supercritical (sc) CO2, and scCO2/[bmim][PF6] mixed solvent. New J Chem 26(9):1246–1248

    Article  CAS  Google Scholar 

  34. Namboodiri VV, Varma RS, Sahle-Demessie E et al (2002) Selective oxidation of styrene to acetophenone in the presence of ionic liquids. Green Chem 4(2):170–173

    Article  CAS  Google Scholar 

  35. Haimov A, Neumann R (2002) Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation. Chem Commun 8:876–877

    Article  Google Scholar 

  36. Wang J-Q, Cai F, Wang E et al (2007) Supercritical carbon dioxide and poly(ethylene glycol): an environmentally benign biphasic solvent system for aerobic oxidation of styrene. Green Chem 9(8):882–887

    Article  CAS  Google Scholar 

  37. Ansari IA, Joyasawal S, Gupta MK et al (2005) Wacker oxidation of terminal olefins in a mixture of [bmim][BF4] and water. Tetrahedron Lett 46(44):7507–7510

    Article  CAS  Google Scholar 

  38. Du Y, Cai F, Kong D-L et al (2005) Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chem 7(7):518–523

    Article  CAS  Google Scholar 

  39. Liu R, Cheng H, Wang Q et al (2008) Selective hydrogenation of unsaturated aldehydes in a poly(ethylene glycol)/compressed carbon dioxide biphasic system. Green Chem 10(10):1082–1086

    Article  CAS  Google Scholar 

  40. Nalawade SP, Picchioni F, Janssen LPBM (2007) Batch production of micron size particles from poly(ethylene glycol) using supercritical CO2 as a processing solvent. Chem Eng Sci 62(6):1712–1720

    Article  CAS  Google Scholar 

  41. Münüklü P, Jansens PJ (2007) Particle formation of edible fats using the supercritical melt micronization process (ScMM). J Supercrit Fluids 43(1):181–190

    Article  Google Scholar 

  42. Yeo S-D, Kiran E (2005) Formation of polymer particles with supercritical fluids: A review. J Supercrit Fluids 34(3):287–308

    Article  CAS  Google Scholar 

  43. Kwon K-T, Uddin MS, Jung G-W et al (2011) Preparation of micro particles of functional pigments by gas-saturated solution process using supercritical carbon dioxide and polyethylene glycol. Korean J Chem Eng 28(10):2044–2049

    Article  CAS  Google Scholar 

  44. Dehmlow EV (1977) Advances in phase-transfer catalysis [new synthetic methods (20)]. Angew Chem Int Ed 16(8):493–505

    Article  Google Scholar 

  45. Freedman HH (1986) Industrial applications of phase transfer catalysis (PTC): past, present and future. Pure Appl Chem 58(6):857–868

    Article  CAS  Google Scholar 

  46. Totten GE, Clinton NA (1998) Poly(ethylene glycol) and derivatives as phase transfer catalysts. J Macromol Sci Rev 38(1):77–142

    Article  Google Scholar 

  47. Totten GE, Clinton NA (1988) Poly[ethylene glycol] derivatives as phase transfer catalysts and solvents for organic reactions. J Macromol Sci Rev 28(2):293–337

    Article  Google Scholar 

  48. Dartt CB, Davis ME (1994) Catalysis for environmentally benign processing. Ind Eng Chem Res 33(12):2887–2899

    Article  CAS  Google Scholar 

  49. Naik SD, Doraiswamy LK (1998) Phase transfer catalysis: chemistry and engineering. AIChE J 44(3):612–646

    Article  CAS  Google Scholar 

  50. Chandler K, Culp CW, Lamb DR et al (1998) Phase-transfer catalysis in supercritical carbon dioxide: kinetic and mechanistic investigations of cyanide displacement on benzyl chloride. Ind Eng Chem Res 37(8):3252–3259

    Article  CAS  Google Scholar 

  51. Heldebrant DJ, Witt HN, Walsh SM et al (2006) Liquid polymers as solvents for catalytic reductions. Green Chem 8(9):807–815

    Article  CAS  Google Scholar 

  52. Burk MJ, Feng S, Gross MF et al (1995) Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide. J Am Chem Soc 117(31):8277–8278

    Article  CAS  Google Scholar 

  53. Kainz S, Koch D, Leitner W et al (1997) Perfluoroalkyl-substituted arylphosphanes as ligands for homogenous catalysis in supercritical carbon dioxide. Angew Chem Int Ed 36(15):1628–1630

    Article  CAS  Google Scholar 

  54. Kainz S, Brinkmann A, Leitner W et al (1999) Iridium-catalyzed enantioselective hydrogenation of imines in supercritical carbon dioxide. J Am Chem Soc 121(27):6421–6429

    Article  CAS  Google Scholar 

  55. Francio G, Leitner W (1999) Highly regio- and enantio-selective rhodium-catalysed asymmetric hydroformylation without organic solvents. Chem Commun 17:1663–1664

    Article  Google Scholar 

  56. Franciò G, Wittmann K, Leitner W (2001) Highly efficient enantioselective catalysis in supercritical carbon dioxide using the perfluoroalkyl-substituted ligand (R, S)-3-H2F6-BINAPHOS. J Organomet Chem 621(1–2):130–142

    Article  Google Scholar 

  57. Komoto I, Kobayashi S (2004) Lewis acid catalysis in supercritical carbon dioxide. Use of poly(ethylene glycol) derivatives and perfluoroalkylbenzenes as surfactant molecules which enable efficient catalysis in scCO2. J Org Chem 69(3):680–688

    Article  CAS  Google Scholar 

  58. Bergbreiter DE, Tian J, Hongfa C (2009) Using soluble polymer supports to facilitate homogeneous catalysis. Chem Rev 109(2):530–582

    Article  CAS  Google Scholar 

  59. Benaglia M, Puglisi A, Cozzi F (2003) Polymer-supported organic catalysts. Chem Rev 103(9):3401–3430

    Article  CAS  Google Scholar 

  60. Mallat T, Baiker A (2004) Oxidation of acohols with molecular oxygen on solid catalysts. Chem Rev 104(6):3037–3058

    Article  CAS  Google Scholar 

  61. Schultz MJ, Sigman MS (2006) Recent advances in homogeneous transition metal-catalyzed aerobic alcohol oxidations. Tetrahedron 62(35):8227–8241

    Article  CAS  Google Scholar 

  62. Miao C-X, He L-N, Wang J-Q et al (2009) Biomimetic oxidation of alcohols catalyzed by TEMPO-functionalized polyethylene glycol and copper(I) chloride in compressed carbon dioxide. Synlett 20:3291–3294

    Google Scholar 

  63. Kazarian SG, Chan KLA (2003) FTIR imaging of polymeric materials under high-pressure carbon dioxide. Macromolecules 37(2):579–584

    Article  Google Scholar 

  64. Du Y, Wu Y, Liu A-H et al (2008) Quaternary ammonium bromide functionalized polyethylene glycol: a highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J Org Chem 73(12):4709–4712

    Article  CAS  Google Scholar 

  65. Liu L, Ji L, Wei Y (2008) Base promoted aerobic oxidation of alcohols to corresponding aldehydes or ketones catalyzed by CuCl/TEMPO. Catal Commun 9(6):1379–1382

    Article  Google Scholar 

  66. Jiang N, Ragauskas AJ (2005) Copper(II)-catalyzed aerobic oxidation of primary alcohols to aldehydes in ionic liquid [bmpy]PF6. Org Lett 7(17):3689–3692

    Article  CAS  Google Scholar 

  67. Mannam S, Alamsetti SK, Sekar G (2007) Aerobic, chemoselective oxidation of alcohols to carbonyl compounds catalyzed by a DABCO-copper complex under mild conditions. Adv Synth Catal 349(14–15):2253–2258

    Article  CAS  Google Scholar 

  68. Hou Z, Theyssen N, Leitner W (2007) Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide. Green Chem 9(2):127–132

    Article  CAS  Google Scholar 

  69. Campestrini S, Carraro M, Ciriminna R et al (2005) A mechanistic study on alcohol oxidations with oxygen catalysed by TPAP-doped ormosils in supercritical carbon dioxide. Adv Synth Catal 347(6):825–832

    Article  CAS  Google Scholar 

  70. Mori K, Hara T, Mizugaki T et al (2004) Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J Am Chem Soc 126(34):10657–10666

    Article  CAS  Google Scholar 

  71. Wang X, Yang H, Feng B et al (2009) Functionalized poly(ethylene glycol)-stabilized palladium nanoparticles as an efficient catalyst for aerobic oxidation of alcohols in supercritical carbon dioxide/poly(ethylene glycol) biphasic solvent system. Catal Lett 132:34–40

    Article  CAS  Google Scholar 

  72. Caravati M, Grunwaldt J-D, Baiker A (2005) Benzyl alcohol oxidation in supercritical carbon dioxide: spectroscopic insight into phase behaviour and reaction mechanism. Phys Chem Chem Phys 7(2):278–285

    Article  CAS  Google Scholar 

  73. Bergbreiter DE (2002) Using soluble polymers to recover catalysts and ligands. Chem Rev 102(10):3345–3384

    Article  CAS  Google Scholar 

  74. Sandee AJ, Reek JNH, Kamer PCJ et al (2001) A silica-supported, switchable, and recyclable hydroformylation–hydrogenation catalyst. J Am Chem Soc 123(35):8468–8476

    Article  CAS  Google Scholar 

  75. Shibahara F, Nozaki K, Hiyama T (2003) Solvent-free asymmetric olefin hydroformylation catalyzed by highly cross-linked polystyrene-supported (R, S)-BINAPHOS–Rh(I) complex. J Am Chem Soc 125(28):8555–8560

    Article  CAS  Google Scholar 

  76. Solinas M, Jiang J, Stelzer O et al (2005) A cartridge system for organometallic catalysis: sequential catalysis and separation using supercritical carbon dioxide to switch phases. Angew Chem Int Ed 44(15):2291–2295

    Article  CAS  Google Scholar 

  77. Conder JR, Fruitwala NA, Shingari MK (1983) Thermal decomposition of polyethylene glycol 20 m and essential oils in gas—liquid chromatography and the effect of traces of oxygen. J Chromatogr A 269:171–178

    Article  CAS  Google Scholar 

  78. Jens G (1996) Degradation of polyethylene glycol. A study of the reaction mechanism in a model molecule: Tetraethylene glycol. Polym Degrad Stabil 52(3):217–222

    Article  Google Scholar 

  79. Altwicker ER (1967) The chemistry of stable phenoxy radicals. Chem Rev 67(5):475–531

    Article  CAS  Google Scholar 

  80. Han S, Kim C, Kwon D (1997) Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer 38(2):317–323

    Article  CAS  Google Scholar 

  81. Han S, Kim C, Kwon D (1995) Thermal degradation of poly(ethyleneglycol). Polym Degrad Stabil 47(2):203–208

    Article  CAS  Google Scholar 

  82. Wang J-Q, He L-N, Miao C-X et al (2009) The free-radical chemistry of polyethylene glycol: organic reactions in compressed carbon dioxide. ChemSusChem 2(8):755–760

    Article  CAS  Google Scholar 

  83. Seki T, Grunwaldt J-D, Baiker A (2007) Continuous catalytic “one-pot” multi-step synthesis of 2-ethylhexanal from crotonaldehyde. Chem Commun 34:3562–3564

    Article  Google Scholar 

  84. Wang J-Q, He L-N, Miao C-X (2009) Polyethylene glycol radical-initiated oxidation of benzylic alcohols in compressed carbon dioxide. Green Chem 11(7):1013–1017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Nian He .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Yang, ZZ., Song, QW., He, LN. (2012). PEG/scCO2 Biphasic Solvent System. In: Capture and Utilization of Carbon Dioxide with Polyethylene Glycol. SpringerBriefs in Molecular Science(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31268-7_3

Download citation

Publish with us

Policies and ethics