Skip to main content

Spike Train Statistics from Empirical Facts to Theory: The Case of the Retina

  • Chapter
  • First Online:
Book cover Modeling in Computational Biology and Biomedicine

Abstract

This chapter focuses on methods from statistical physics and probability theory allowing the analysis of spike trains in neural networks. Taking as an example the retina we present recent works attempting to understand how retina ganglion cells encode the information transmitted to the visual cortex via the optical nerve, by analyzing their spike train statistics. We compare the maximal entropy models used in the literature of retina spike train analysis to rigorous results establishing the exact form of spike train statistics in conductance-based Integrate-and-Fire neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fluctuations are not necessarily Gaussian, if the system undergoes a second order phase transition where the topological pressure introduced in Sect. 8.3.1.5 is not twice differentiable.

  2. 2.

    This is an approximation of the exact potential holding when the noise variance is small.

References

  1. Principles of Neural Science. 4th edition. McGraw-Hill, 2000.

    Google Scholar 

  2. S.-I. Amari. Information geometry of multiple spike trains. In Sonja Grün and Stefan Rotter, editors, Analysis of Parallel Spike trains, volume 7 of Springer Series in Computational Neuroscience, part 11, pages 221–253. Springer, 2010. DOI: 10.1007/978-1-4419-5675.

    Google Scholar 

  3. J.J. Atick. Could information theory provide an ecological theory of sensory processing? Network: Computation in Neural Systems, 3(2):213–251, 1992.

    Google Scholar 

  4. B.B. Averbeck, P.E. Latham, and A. Pouget. Neural correlations, population coding and computation. Nat Rev Neurosci, 7(5):358–66, 2006.

    Google Scholar 

  5. V. Balasubramanian and P. Sterling. Receptive fields and functional architecture in the retina. J Physiol (Lond), 587(12):2753–67, 2009.

    Google Scholar 

  6. I.H. Brivanlou, D.K. Warland, and M. Meister. Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20(3):527–39, 1998.

    Google Scholar 

  7. B. Cessac. Statistics of spike trains in conductance-based neural networks: Rigorous results. Journal of Computational Neuroscience, 1(8), 2011.

    Google Scholar 

  8. B. Cessac, H. Paugam-Moisy, and T. Viéville. Overview of facts and issues about neural coding by spikes. J. Physiol. Paris, 104(1–2):5–18, February 2010.

    Google Scholar 

  9. B. Cessac and T. Viéville. On dynamics of integrate-and-fire neural networks with adaptive conductances. Frontiers in neuroscience, 2(2), July 2008.

    Google Scholar 

  10. J.R. Chazottes and G. Keller. Pressure and Equilibrium States in Ergodic Theory, chapter Ergodic Theory. Encyclopedia of Complexity and System Science, Springer, 2009.

    Google Scholar 

  11. S. Cocco, S. Leibler, and R. Monasson. Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. PNAS, 106(33):14058–14062, 2009.

    Google Scholar 

  12. I.P. Cornfeld, S.V. Fomin, and Y.G. Sinai. Ergodic Theory. Springer, Berlin, Heidelberg, New York, 1982.

    Google Scholar 

  13. J.B. Demb, K. Zaghloul, and P. Sterling. Cellular basis for the response to second-order motion cues in y retinal ganglion cells. Neuron, 32:711–721, 2001.

    Google Scholar 

  14. S.H. DeVries. Correlated firing in rabbit retinal ganglion cells. Journal of Neurophysiology, 81(2):908–920, 1999.

    Google Scholar 

  15. J.E. Dowling. The retina: an approachable part of the brain. Harvard University Press, Cambridge, Mass. (USA)., 1987.

    Google Scholar 

  16. R. Fernandez and G. Maillard. Chains with complete connections : General theory, uniqueness, loss of memory and mixing properties. J. Stat. Phys., 118(3–4):555–588, 2005.

    Google Scholar 

  17. G.D. Field and E.J. Chichilnisky. Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci, 30:1–30, 2007.

    Google Scholar 

  18. E. Ganmor, R. Segev, and E. Schneidman. The architecture of functional interaction networks in the retina. The journal of neuroscience, 31(8):3044–3054, 2011.

    Google Scholar 

  19. E. Ganmor, R. Segev, and E. Schneidman. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. PNAS, 108(23):9679–9684, 2011.

    Google Scholar 

  20. W.S. Geisler. Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol., 59:167–192, 2008.

    Google Scholar 

  21. W.S. Geisler, J.S. Perry, and A.D. Ing. Natural systems analysis. Human Vision and Electronic Imaging XIII, 6806:8060–M8060, 2008.

    Google Scholar 

  22. H.-O. Georgii. Gibbs measures and phase transitions. De Gruyter Studies in Mathematics:9. Berlin; New York, 1988.

    Google Scholar 

  23. I.I. Gikhman and A.V. Skorokhod. The Theory of Stochastic Processes. Springer, 1979.

    Google Scholar 

  24. T. Gollisch and M. Meister. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron, 65(2):150–164, January 2010.

    Google Scholar 

  25. J. M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. unpublished, 1971.

    Google Scholar 

  26. A.L. Jacobs, G. Fridman, R.M. Douglas, N.M. Alam, P.E. Latham, G.T. Prusky, and S. Nirenberg. Ruling out and ruling in neural codes. Proc Natl Acad Sci U S A, 106(14):5936–41, 2009.

    Google Scholar 

  27. E.T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106:620, 1957.

    Google Scholar 

  28. G. Keller. Equilibrium States in Ergodic Theory. Cambridge University Press, 1998.

    Google Scholar 

  29. K. Koch, J. McLean, M. Berry II, P. Sterling, V. Balasubramanian, and M.A. Freed. Efficiency of information transmission by retinal ganglion cells. Curr Biol, 14(17):1523–30, 2004.

    Google Scholar 

  30. K. Koch, J. McLean, R. Segev, M.A. Freed, M.J. Berry II, V. Balasubramanian, and P. Sterling. How much the eye tells the brain. Curr Biol, 16(14):1428–34, 2006.

    Google Scholar 

  31. B.G. Lindsey, K.F. Morris, R. Shannon, and G.L. Gerstein. Repeated patterns of distributed synchrony in neuronal assemblies. Journal of Neurophysiology, 78:1714–1719, 1997.

    Google Scholar 

  32. N.K Logothetis. Vision: A window on consciousness. Scientific American, 281:44–51, 1999.

    Google Scholar 

  33. G. Maillard. Introduction to chains with complete connections. Ecole Federale Polytechnique de Lausanne, winter 2007.

    Google Scholar 

  34. O. Marre, S. El Boustani, Y. Frégnac, and A. Destexhe. Prediction of spatiotemporal patterns of neural activity from pairwise correlations. Phys. rev. Let., 102:138101, 2009.

    Google Scholar 

  35. L. Martignon, G. Deco, K. Laskey, M. Diamond, W. Freiwald, and E. Vaadia. Neural coding: Higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Computation, 12(11):2621–2653, November 2000.

    Google Scholar 

  36. L. Martignon, H. von Hasseln, S. Grün, A. Aertsen, and G. Palm. Detecting higher-order interactions among the spiking events in a group of neurons. Biological Cybernetics, 73(1):69–81, July 1995.

    Google Scholar 

  37. R. Masland. The fundamental plan of the retina. Nature neuroscience, 4(9), September 2001.

    Google Scholar 

  38. R.H. Masland and P.R. Martin. The unsolved mystery of vision. Curr Biol, 17(15):R577–82, 2007.

    Google Scholar 

  39. D.N. Mastronarde. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X-and Y-cells. Journal of Neurophysiology, 49(2):303–324, 1983.

    Google Scholar 

  40. M. Meister, J. Pine, and D.A. Baylor. Multi-neuronal signals from the retina: acquisition and analysis. J Neurosci Methods, 51(1):95–106, 1994.

    Google Scholar 

  41. S. Nirenberg, S. M. Carcieri, A. L. Jacobs, and P. E. Latham. Retinal ganglion cells act largely as independent encoders. Nature, 411(6838):698–701, 2001.

    Google Scholar 

  42. I.E. Ohiorhenuan, F. Mechler, K.P. Purpura, A.M. Schmid, Q. Hu, and J.D. Victor. Sparse coding and high-order correlations in fine-scale cortical networks. Nature, 466(7):617–621, 2010.

    Google Scholar 

  43. B.A. Olshausen and D.J. Field. Natural image statistics and efficient coding. Network, 7(2):333–9, 1996.

    Google Scholar 

  44. S. Panzeri and S.R. Schultz. A unified approach to the study of temporal, correlational, and rate coding. Neural Comput, 13:1311–1349, 2001.

    Google Scholar 

  45. A. Petrusca, D. Grivich, M. Sher, A. Field, G. Gauthier, J. Greschner, M. Shlens, J. Chichilnisky, and E. Litke. Identification and characterization of a y-like primate retinal ganglion cell type. J Neuros, 27(41):11019–27, 2007.

    Google Scholar 

  46. J.W. Pillow, L. Paninski, V.J. Uzzell, E.P. Simoncelli, and E.J. Chichilnisky. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J. Neurosci, 25:11003–11013, 2005.

    Google Scholar 

  47. A. Pouget, P. Dayan, and R. Zemel. Information processing with population codes. Nat Rev Neurosci, 1(2):125–32, 2000.

    Google Scholar 

  48. F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek. Spikes: Exploring the Neural Code. Bradford Books, 1997.

    Google Scholar 

  49. R. L. Rockhill, F. J. Daly, M. A. MacNeil, S. P. Brown, and R. H. Masland. The diversity of ganglion cells in a mammalian retina. J Neurosci, 22(9):3831–43, 2002.

    Google Scholar 

  50. R. W. Rodieck. Maintained activity of cat retinal ganglion cells. J Neurophysiol, 30(5):1043–71, 1967.

    Google Scholar 

  51. Y. Roudi, E. Aurell, and J.A. Hertz. Statistical physics of pairwise probability models. Frontiers in Computational Neuroscience, page 15, 2009.

    Google Scholar 

  52. Y. Roudi and J. Hertz. Mean field theory for non-equilibrium network reconstruction. Phys. Rev. Lett., 106(048702), 2011.

    Google Scholar 

  53. Y. Roudi and J.A. Hertz. Mean field theory for non-equilibrium network reconstruction. arXiv, page 11, Sept 2010.

    Google Scholar 

  54. Y. Roudi, S. Nirenberg, and P.E. Latham. Pairwise maximum entropy models for studying large biological systems: when they can work and when they can’t. PLOS Computational Biology, 5(5), 2009.

    Google Scholar 

  55. Y. Roudi, J. Tyrcha, and J.A. Hertz. Ising model for neural data: Model quality and approximate methods for extracting functional connectivity. Physical Review E, page 051915, 2009.

    Google Scholar 

  56. M. Rudolph and A. Destexhe. Analytical integrate and fire neuron models with conductance-based dynamics for event driven simulation strategies. Neural Computation, 18:2146–2210, 2006.

    Google Scholar 

  57. D. Ruelle. Thermodynamic formalism. Addison-Wesley, Reading, Massachusetts, 1978.

    Google Scholar 

  58. R. Sarpeshkar. Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems. Cambridge University Press, 2010.

    Google Scholar 

  59. M.T. Schaub and S.R. Schultz. The ising decoder: reading out the activity of large neural ensembles. arXiv:1009.1828, 2010.

    Google Scholar 

  60. E. Schneidman, M.J. Berry II, R. Segev, and W. Bialek. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087):1007–1012, 2006.

    Google Scholar 

  61. E. Schneidman, W. Bialek, and M.J. Berry II. Synergy, redundancy, and independence in population codes. J Neurosci, 23(37):11539–53, 2003.

    Google Scholar 

  62. G. Schwartz and M.J. Berry II. Sophisticated temporal pattern recognition in retinal ganglion cells. J Neurophysiol, 99(4):1787–98, 2008.

    Google Scholar 

  63. R. Segev, I. Baruchi, E. Hulata, and E. Ben-Jacob. Hidden neuronal correlations in cultured networks. Physical Review Letters, 92:118102, 2004.

    Google Scholar 

  64. E. Seneta. Non-negative Matrices and Markov Chains. Springer, 2006.

    Google Scholar 

  65. J. Shlens, G.D. Field, J. L. Gauthier, M.I. Grivich, D. Petrusca, A. Sher, A. M. Litke, and E.J. Chichilnisky. The structure of multi-neuron firing patterns in primate retina. J Neurosci, 26(32):8254–66, 2006.

    Google Scholar 

  66. J. Shlens, G.D. Field, J.L. Gauthier, M. Greschner, A. Sher, A.M. Litke, and E.J. Chichilnisky. The structure of large-scale synchronized firing in primate retina. The Journal of Neuroscience, 29(15):5022–5031, April 2009.

    Google Scholar 

  67. E.P. Simoncelli and B.A. Olshausen. Natural image statistics and neural representation. Annu Rev Neurosci, 24:1193–216, 2001.

    Google Scholar 

  68. S.P. Strong, R. Koberle, R.R. de Ruyter van Steveninck, and W. Bialek. Entropy and information in neural spike trains. Phys. Rev. Let, 80(1):197–200, 1998.

    Google Scholar 

  69. M. Taketani and M. Baudry. Advances in Network Electrophysiology: Using Multi-Electrode Arrays. Springer, 2006.

    Google Scholar 

  70. E. Thompson, A. Palacios, and F. Varela. Ways of coloring: Comparative color vision as case study for cognitive science. Behavioral and Brain Sciences, 15:1–75, 1992.

    Google Scholar 

  71. G. Tkačik, E. Schneidman, M.J. Berry II, and W. Bialek. Spin glass models for a network of real neurons. arXiv, page 15, 2009.

    Google Scholar 

  72. J. L. Van Hemmen and T.J. Sejnowski. 23 problems in systems neuroscience. Oxford University Press, Inc., 2006.

    Google Scholar 

  73. J.-C. Vasquez, H. Nasser, A. Palacios, B. Cessac, T. Viéville, and H. Rostro-Gonzalez. Parametric estimation of spike train statistics by gibbs distributions : an application to bio-inspired and experimental data. In Proceedings of Neurocomp 2010 (Lyon), 2010.

    Google Scholar 

  74. J.-C. Vasquez, A.G. Palacios, O. Marre, M.J. Berry II, and B. Cessac. Gibbs distribution analysis of temporal correlation structure on multicell spike trains from retina ganglion cells. J. Physiol. Paris, 2011. submitted.

    Google Scholar 

  75. J.-C. Vasquez, T. Viéville, and B. Cessac. Entropy-based parametric estimation of spike train statistics. Inria Research Report, 2010.

    Google Scholar 

  76. A.E.P. Villa, I.V. Tetko, B. Hyland, and A. Najem. Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task. Proc Natl Acad Sci USA, 96(3):1106–1111, 1999.

    Google Scholar 

  77. A. Wohrer and P. Kornprobst. Virtual retina: a biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience, 26(2):219–249, 2009.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by ERC grant Nervi 227747 (BC), European grant BrainScales (BC), ANR-CONICYT grant (KEOPS), FONDECYT 1110292 (AP) and ICM-IC09-022-P (AP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Cessac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cessac, B., Palacios, A.G. (2013). Spike Train Statistics from Empirical Facts to Theory: The Case of the Retina. In: Cazals, F., Kornprobst, P. (eds) Modeling in Computational Biology and Biomedicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31208-3_8

Download citation

Publish with us

Policies and ethics