Skip to main content

Multiscale Modeling of Heterogeneous Media Applying AEH to 3D Bodies

  • Conference paper
  • 2022 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7333))

Abstract

The Asymptotic Expansion Homogenization (AEH) is a multiscale technique applied to estimate effective properties of heterogeneous media with periodic structure. The main advantages of AEH are the reduction of the problem size and the ability to employ an homogenized property that keeps information from the heterogeneous microstructure. The aim of this work is to develop a parallel program that applies both Finite Element Method (FEM) and AEH to estimate the elasticity properties of 3D bodies. A sequential version of the program, called HEA3D, was successfully implemented using FORTRAN. Also, a parallel version of the code was implemented using OpenMP and CUDA. The validation of the codes consisted of comparisons of the numerical results obtained, with numerical and experimental data available in the literature, showing good agreement. Significant speedups were obtained by the parallel version of the code.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, M., Park, Y.-B., Okoli, O.I., Zhang, C.: Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Composites Science and Technology 69(3-4), 335–342 (2009)

    Article  Google Scholar 

  2. Lee, K., Park, J.: A numerical model for elastic modulus of concrete considering interfacial transition zone. Cement and Concrete Research 38(3), 396–402 (2008)

    Article  Google Scholar 

  3. Sanz-Herrera, J., Garcia-Aznar, J., Doblare, M.: On scaffold designing for bone regeneration: A computational multiscale approach. Acta Biomaterialia 5(1), 219–229 (2009)

    Article  Google Scholar 

  4. Quintela, B.M., Farage, M.C.R., Lobosco, M.: Evaluation of effective properties of heterogeneous media through a GPGPU based algorithm. In: XXXI CILAMCE, vol. XXIX, pp. 7085–7094 (2010)

    Google Scholar 

  5. Quintela, B.M.: Implementação Computacional Paralela da Homogeneização por Expansão Assintótica para Análise de Problemas Mecânicos em 3D: Master’s Thesis. Federal University of Juiz de Fora, Juiz de Fora (2011) (in Portuguese)

    Google Scholar 

  6. Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. J. Ehlers Lecture Notes in Physics. Springer (1980)

    Google Scholar 

  7. Murad, M.A., Guerreiro, J.N., Loula, A.F.D.: Micromechanical computational modeling of secondary consolidation and hereditary creep in soils. Comput. Methods Appl. Mech. Engrg. 190, 1985–2016 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Murad, M.A., Moyne, C.: Micromechanical computational modeling of expansive porous media. C. R. Mechanique 330, 865–870 (2002)

    Article  MATH  Google Scholar 

  9. Romkes, A., Oden, J.T.: Adaptive modeling of wave propagation in heterogeneous elastic solid. Comput. Methods Appl. Mech. Engrg. 193, 539–559 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cioranescu, D., Donato, P.: An Introduction to Homogenization, 1st edn. Oxford University Press (1999)

    Google Scholar 

  11. Chung, P.W., Tamma, K.K., Namburu, R.R.: Asymptotic expansion homogenization for heterogeneous media: computational issues and applications. Composites: Part A 32, 1291–1301 (2001)

    Article  Google Scholar 

  12. Wang, W., Luo, D., Takao, Y., Kakimoto, K.: New solution method for homogenization analysis and its application to the prediction of macroscopic elastic constants of materials with periodic microstructures. Computers & Structures 84(15-16), 991–1001 (2006)

    Article  MathSciNet  Google Scholar 

  13. Oliveira, J., Da Cruz, J.P., Teixeira-Dias, F.: Asymptotic homogenisation in linear elasticity. Part II Finite element procedures and multiscale applications. Computational Materials Science 45, 1081–1096 (2009)

    Article  Google Scholar 

  14. Coutinho, A.L.G.A., Martins, M.A.D., Alves, J.L.D., Landau, L., Moraes, A.: A Edge-Based Finite Element Techniques for Nonlinear Solid Mechanics Problems. Int. J. Num. Meth. Eng. 50, 2053–2058 (2000)

    Article  Google Scholar 

  15. Liu, Y., Zhou, W., Qiang, Y.: A distributed memory parallel element-by-element scheme based on Jacobi-conditioned conjugate gradient for 3D finite element analysis. J. Eng. Mech. (1983)

    Google Scholar 

  16. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory Parallel Programming. Scientific and Engineering Computation. The MIT Press (October 2007)

    Google Scholar 

  17. Nvidia: Nvidia Cuda Programming Guide 2.0: Nvidia (2008)

    Google Scholar 

  18. Nvidia: Cuda: Cublas Library: Nvidia (2008)

    Google Scholar 

  19. Cula Tools: Cula Programmer’s Guide: Em Photonics, Inc. (2009)

    Google Scholar 

  20. Reddy, J.N., Miravete, A.: Practical Analysis of Composite Laminates. CRC Press (1995)

    Google Scholar 

  21. Farber, R.: CUDA Application Design and Development. Morgan Kaufmann (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Melo Quintela, B., Caldas, D.M., Farage, M.C.R., Lobosco, M. (2012). Multiscale Modeling of Heterogeneous Media Applying AEH to 3D Bodies. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2012. ICCSA 2012. Lecture Notes in Computer Science, vol 7333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31125-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31125-3_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31124-6

  • Online ISBN: 978-3-642-31125-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics