Skip to main content

Mechanical Properties of Nanostructured Metals

  • Chapter
  • First Online:

Abstract

This chapter has two principal sections. The first addresses single-phase polycrystalline metals and alloys and the second addresses two-phase multilayered thin films comprised of alternating A-B layers. In the former, nanostructured material is created by shrinking grain size to the nm scale. In the latter, it is created by shrinking the thickness of individual A and B layers to the nm scale. In many cases, the layers are polycrystalline. Thus, we explore the mechanical properties of crystalline metals that are packed with high densities of grain boundaries (in the polycrystalline case) and also interfaces (in the multilayer case).

The basic format of each section is identical, beginning with synthesis and relevant structural features, then mechanical properties, then deformation mechanisms, and finally modeling and simulation. Space limitations pose a trade-off between breadth and depth of coverage. In most cases, a broad coverage is provided, with the intent that the numerous references can be consulted for more detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Erb U, Aust KT, Palumbo G (2007) Electrodeposited nanocrystalline metals, alloys and composites. In: Koch CC (ed) Nanostructured materials – processing, properties, and applications, 2nd edn. William Andrew, New York, pp 235–292

    Google Scholar 

  2. El-Sherik AM, Erb U (1995) Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. J Mater Sci 30:5743–5749

    Google Scholar 

  3. Shen YF, Lu L, Lu QH, Jin ZH, Lu K (2005) Tensile properties of copper with nano-scale twins. Scripta Mater 52:989–994

    Google Scholar 

  4. Detor AJ, Schuh CA (2007) Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater 55:371–379

    Google Scholar 

  5. Valiev R, Islamgaliev R, Alexandrov I (2000) Bulk nanostructured materials from severe plastic deformation. Progress Mater Sci 45:103–189

    Google Scholar 

  6. Zhu YT, Liao XZ, Srinivasan SG, Lavernia EJ (2005) Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. J Appl Phys 98:034319

    Google Scholar 

  7. Liddicoat PV, Liao X-Z, Zhao Y, Zhu Y, Murashkin MY, Lavernia EJ, Valiev RZ, Ringer SP (2010) Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun 1:63

    Google Scholar 

  8. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Google Scholar 

  9. Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954

    Google Scholar 

  10. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Google Scholar 

  11. Schuh CA, Nieh TG, Iwasaki H (2003) The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater 51:431–443

    Google Scholar 

  12. Trelewicz JR, Schuh CA (2007) The Hall–Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater 55:5948–5958

    Google Scholar 

  13. Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391:561–563

    Google Scholar 

  14. Van Swygenhoven H, Caro A, Farkas D (2001) Grain boundary structure and its influence on plastic deformation of polycrystalline FCC metals at the nanoscale: a molecular dynamics study. Scr Mater 44:1513–1516

    Google Scholar 

  15. Argon AS, Yip S (2006) The strongest size. Philos Mag Lett 86:713–720

    Google Scholar 

  16. Kumar K, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774

    Google Scholar 

  17. Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065

    Google Scholar 

  18. Nieman GW, Weertman JR, Siegel RW (1991) Mechanical behavior of nanocrystalline Cu and Pd. J Mater Res 6:1012–1027

    Google Scholar 

  19. Sanders PG, Eastman JA, Weertman JR (1997) Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater 45:4019–4025

    Google Scholar 

  20. Koch CC (2003) Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr Mater 49:657–662

    Google Scholar 

  21. Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331:1587–1590

    Google Scholar 

  22. Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915

    Google Scholar 

  23. Lee Z, Witkin DB, Radmilovic V, Lavernia EJ, Nutt SR (2005) Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al–7.5 Mg alloy. Mater Sci Eng A 410–411:462–467

    Google Scholar 

  24. Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Google Scholar 

  25. Wang YM, Ma E (2004) Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater 52:1699–1709

    Google Scholar 

  26. Ma E, Wang YM, Lu QH, Sui ML, Lu L, Lu K (2004) Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl Phys Lett 85:4932–4934

    Google Scholar 

  27. Dao M, Lu L, Shen YF, Suresh S (2006) Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater 54:5421–5432

    Google Scholar 

  28. Karimpoor AA, Erb U, Aust KT, Palumbo G (2003) High strength nanocrystalline cobalt with high tensile ductility. Scr Mater 49:651–656

    Google Scholar 

  29. Wang YM, Ott RT, Hamza AV, Besser MF, Almer J, Kramer MJ (2010) Achieving large uniform tensile ductility in nanocrystalline metals. Phys Rev Lett 105:215502

    Google Scholar 

  30. Brandstetter S, Van Swygenhoven H, Van Petegem S, Schmitt B, Maaß R, Derlet PM (2006) From micro- to macroplasticity. Adv Mater 18:1545–1548

    Google Scholar 

  31. Rajagopalan J, Han JH, Saif MTA (2007) Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315:1831–1834

    Google Scholar 

  32. Rajagopalan J, Rentenberger C, Peter Karnthaler H, Dehm G, Saif MTA (2010) In situ TEM study of microplasticity and Bauschinger effect in nanocrystalline metals. Acta Mater 58:4772–4782

    Google Scholar 

  33. Rajagopalan J, Saif MTA (2011) Effect of microstructural heterogeneity on the mechanical behavior of nanocrystalline metal films. J Mater Res 26:2826–2832

    Google Scholar 

  34. Lonardelli I, Almer J, Ischia G, Menapace C, Molinari A (2009) Deformation behavior in bulk nanocrystalline-ultrafine aluminum: in situ evidence of plastic strain recovery. Scr Mater 60:520–523

    Google Scholar 

  35. Li L, Anderson PM, Lee M-G, Bitzek E, Derlet P, Swygenhoven HV (2009) The stress–strain response of nanocrystalline metals: a quantized crystal plasticity approach. Acta Mater 57:812–822

    Google Scholar 

  36. Koslowski M (2010) Effect of grain size distribution on plastic strain recovery. Phys Rev B 82:054110

    Google Scholar 

  37. Li H, Ebrahimi F (2004) Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Appl Phys Lett 84:4307–4309

    Google Scholar 

  38. Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater 53:1521–1533

    Google Scholar 

  39. Wei H, Hibbard GD, Palumbo G, Erb U (2007) The effect of gauge volume on the tensile properties of nanocrystalline electrodeposits. Scr Mater 57:996–999

    Google Scholar 

  40. Niu JJ, Zhang JY, Liu G, Zhang P, Lei SY, Zhang GJ, Sun J (2012) Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films. Acta Mater 60:3677–3689

    Google Scholar 

  41. Zehetbauer M, Seumer V (1993) Cold work hardening in stages IV and V of F.C.C. metals—I. Experiments and interpretation. Acta Metall Mater 41:577–588

    Google Scholar 

  42. Lu L, Li SX, Lu K (2001) An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scr Mater 45:1163–1169

    Google Scholar 

  43. Kalkman AJ, Verbruggen AH, Radelaar S (2002) High-temperature tensile tests and activation volume measurement of free-standing submicron Al films. J Appl Phys 92:6612–6615

    Google Scholar 

  44. Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51:5159–5172

    Google Scholar 

  45. Hayes R, Witkin D, Zhou F, Lavernia E (2004) Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater 52:4259–4271

    Google Scholar 

  46. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater Sci Eng A 381:71–79

    Google Scholar 

  47. Torre FD, Spätig P, Schäublin R, Victoria M (2005) Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater 53:2337–2349

    Google Scholar 

  48. Wang YM, Hamza AV, Ma E (2006) Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater 54:2715–2726

    Google Scholar 

  49. Chen J, Lu L, Lu K (2006) Hardness and strain rate sensitivity of nanocrystalline Cu. Scr Mater 54:1913–1918

    Google Scholar 

  50. Miyamoto H, Ota K, Mimaki T (2006) Viscous nature of deformation of ultra-fine grain aluminum processed by equal-channel angular pressing. Scr Mater 54:1721–1725

    Google Scholar 

  51. Gu P, Dao M, Asaro RJ, Suresh S (2011) A unified mechanistic model for size-dependent deformation in nanocrystalline and nanotwinned metals. Acta Mater 59:6861–6868

    Google Scholar 

  52. Malow TR, Koch CC, Miraglia PQ, Murty KL (1998) Compressive mechanical behavior of nanocrystalline Fe investigated with an automated ball indentation technique. Mater Sci Eng A 252:36–43

    Google Scholar 

  53. Jia D, Ramesh KT, Ma E (2003) Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Mater 51:3495–3509

    Google Scholar 

  54. Wei Q, Jiao T, Mathaudhu SN, Ma E, Hartwig KT, Ramesh KT (2003) Microstructure and mechanical properties of tantalum after equal channel angular extrusion (ECAE). Mater Sci Eng A 358:266–272

    Google Scholar 

  55. Wei Q, Kecskes L, Jiao T, Hartwig KT, Ramesh KT, Ma E (2004) Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation. Acta Mater 52:1859–1869

    Google Scholar 

  56. Wei Q, Jiao T, Ramesh KT, Ma E (2004) Nano-structured vanadium: processing and mechanical properties under quasi-static and dynamic compression. Scr Mater 50:359–364

    Google Scholar 

  57. Wei Q, Ramesh KT, Ma E, Kesckes LJ, Dowding RJ, Kazykhanov VU, Valiev RZ (2005) Plastic flow localization in bulk tungsten with ultrafine microstructure. Appl Phys Lett 86:101907

    Google Scholar 

  58. Jia D, Wang YM, Ramesh KT, Ma E, Zhu YT, Valiev RZ (2001) Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl Phys Lett 79:611–613

    Google Scholar 

  59. Hwang S, Nishimura C, McCormick P (2001) Deformation mechanism of nanocrystalline magnesium in compression. Scr Mater 44:1507–1511

    Google Scholar 

  60. Zhang X, Wang H, Scattergood RO, Narayan J, Koch CC, Sergueeva AV, Mukherjee AK (2002) Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn. Acta Mater 50:4823–4830

    Google Scholar 

  61. Wang YM, Ma E (2004) On the origin of ultrahigh cryogenic strength of nanocrystalline metals. Appl Phys Lett 85:2750–2752

    Google Scholar 

  62. Trojanová Z, Lukáč P, Száraz Z (2005) Deformation behaviour of nanocrystalline Mg studied at elevated temperatures. Rev Adv Mater Sci 10:437–441

    Google Scholar 

  63. Tabor D (1970) The hardness of solids. Rev Phys Technol 1:145

    Google Scholar 

  64. Maier V, Durst K, Mueller J, Backes B, Höppel HW, Göken M (2011) Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J Mater Res 26:1421–1430

    Google Scholar 

  65. Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382

    Google Scholar 

  66. Jeong DH, Erb U, Aust KT, Palumbo G (2003) The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni–P coatings. Scr Mater 48:1067–1072

    Google Scholar 

  67. Rupert TJ, Schuh CA (2010) Sliding wear of nanocrystalline Ni–W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater 58:4137–4148

    Google Scholar 

  68. Padilla HA II, Boyce BL (2010) A review of fatigue behavior in nanocrystalline metals. Exp Mech 50:5–23

    Google Scholar 

  69. Hanlon T, Kwon Y-N, Suresh S (2003) Grain size effects on the fatigue response of nanocrystalline metals. Scr Mater 49:675–680

    Google Scholar 

  70. Hanlon T, Tabachnikova ED, Suresh S (2005) Fatigue behavior of nanocrystalline metals and alloys. Int J Fatigue 27:1147–1158

    Google Scholar 

  71. Mughrabi H, Höppel HW (2010) Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int J Fatigue 32:1413–1427

    Google Scholar 

  72. Suresh S (1998) Fatigue of materials. Cambridge University Press, Cambridge

    Google Scholar 

  73. Boyce BL, Padilla HA II (2011) Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys. Metall Mat Trans A 42:1793–1804

    Google Scholar 

  74. Moser B, Hanlon T, Kumar KS, Suresh S (2006) Cyclic strain hardening of nanocrystalline nickel. Scr Mater 54:1151–1155

    Google Scholar 

  75. Cheng S, Stoica AD, Wang X-L, Wang GY, Choo H, Liaw PK (2007) Fracture of Ni with grain-size from nanocrystalline to ultrafine scale under cyclic loading. Scr Mater 57:217–220

    Google Scholar 

  76. Cheng S, Xie J, Stoica AD, Wang X-L, Horton JA, Brown DW, Choo H, Liaw PK (2009) Cyclic deformation of nanocrystalline and ultrafine-grained nickel. Acta Mater 57:1272–1280

    Google Scholar 

  77. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3:43–47

    Google Scholar 

  78. Cheng S, Spencer JA, Milligan WW (2003) Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater 51:4505–4518

    Google Scholar 

  79. Lund AC, Schuh CA (2005) Strength asymmetry in nanocrystalline metals under multiaxial loading. Acta Mater 53:3193–3205

    Google Scholar 

  80. Frøseth AG, Derlet PM, Van Swygenhoven H (2004) Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance. Acta Mater 52:5863–5870

    Google Scholar 

  81. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405

    Google Scholar 

  82. Budrovic Z, Swygenhoven HV, Derlet PM, Petegem SV, Schmitt B (2004) Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science 304:273–276

    Google Scholar 

  83. Hugo RC, Kung H, Weertman JR, Mitra R, Knapp JA, Follstaedt DM (2003) In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater 51:1937–1943

    Google Scholar 

  84. Wu X-L, Ma E (2006) Dislocations in nanocrystalline grains. Appl Phys Lett 88:231911

    Google Scholar 

  85. Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl Phys Lett 87:091904

    Google Scholar 

  86. Shan ZW, Wiezorek JMK, Stach EA, Follstaedt DM, Knapp JA, Mao SX (2007) Dislocation dynamics in nanocrystalline nickel. Phys Rev Lett 98:095502

    Google Scholar 

  87. Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277

    Google Scholar 

  88. Wu XL, Zhu YT (2008) Inverse grain-size effect on twinning in nanocrystalline Ni. Phys Rev Lett 101:025503

    Google Scholar 

  89. Zhu YT, Liao XZ, Wu XL (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57:1–62

    Google Scholar 

  90. Asaro RJ, Krysl P, Kad B (2003) Deformation mechanism transitions in nanoscale fcc metals. Philos Mag Lett 83:733–743

    Google Scholar 

  91. Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhu YT, Zhou F, Lavernia EJ, Xu HF (2004) Formation mechanism of wide stacking faults in nanocrystalline Al. Appl Phys Lett 84:3564

    Google Scholar 

  92. Van Swygenhoven H, Derlet PM (2001) Grain-boundary sliding in nanocrystalline fcc metals. Phys Rev B 64:224105

    Google Scholar 

  93. Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H (2005) Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater 53:1–40

    Google Scholar 

  94. Cahn JW, Mishin Y, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–4975

    Google Scholar 

  95. Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305:654–657

    Google Scholar 

  96. Ke M, Hackney SA, Milligan WW, Aifantis EC (1995) Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostructured Mater 5:689–697

    Google Scholar 

  97. Zhang K, Weertman JR, Eastman JA (2005) Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl Phys Lett 87:061921

    Google Scholar 

  98. Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263

    Google Scholar 

  99. Legros M, Gianola DS, Hemker KJ (2008) In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56:3380–3393

    Google Scholar 

  100. Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Experimental observations of stress-driven grain boundary migration. Science 326:1686–1690

    Google Scholar 

  101. Van Swygenhoven H, Derlet PM, Hasnaoui A (2002) Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys Rev B 66:024101

    Google Scholar 

  102. Van Swygenhoven H, Derlet PM, Frøseth AG (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399–403

    Google Scholar 

  103. Van Swygenhoven H, Derlet PM, Frøseth AG (2006) Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater 54:1975–1983

    Google Scholar 

  104. Bitzek E, Derlet PM, Anderson PM, Van Swygenhoven H (2008) The stress–strain response of nanocrystalline metals: a statistical analysis of atomistic simulations. Acta Mater 56:4846–4857

    Google Scholar 

  105. Fu H-H, Benson DJ, Meyers MA (2001) Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater 49:2567–2582

    Google Scholar 

  106. Wei Y, Su C, Anand L (2006) A computational study of the mechanical behavior of nanocrystalline fcc metals. Acta Mater 54:3177–3190

    Google Scholar 

  107. Zhu B, Asaro RJ, Krysl P, Zhang K, Weertman JR (2006) Effects of grain size distribution on the mechanical response of nanocrystalline metals: part II. Acta Mater 54:3307–3320

    Google Scholar 

  108. Wei Y, Bower AF, Gao H (2007) Recoverable creep deformation due to heterogeneous grain-boundary diffusion and sliding. Scr Mater 57:933–936

    Google Scholar 

  109. Li L, Van Petegem S, Van Swygenhoven H, Anderson PM (2012) Slip-induced intergranular stress redistribution in nanocrystalline Ni. Acta Mater 60:7001–7010

    Google Scholar 

  110. Misra A, Verdier M, Lu Y, Kung H, Mitchell T, Nastasi M, Embury J (1998) Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites. Scripta Mater 39:555–560

    Google Scholar 

  111. Clemens BM, Kung H, Barnett SA (1999) Mechanical behavior of nanostructured materials – structure and strength of multilayers. MRS Bull 24:20–26

    Google Scholar 

  112. Mara NA, Bhattacharyya D, Dickerson P, Hoagland RG, Misra A (2008) Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl Phys Lett 92:231901

    Google Scholar 

  113. Mara NA, Bhattacharyya D, Dickerson P, Hoagland RG, Misra A (2009) Ultrahigh strength and ductility of Cu-Nb nanolayered composites. Mater Sci Forum 633–634:647–653

    Google Scholar 

  114. Misra A, Zhang X, Hammon D, Hoagland RG (2005) Work hardening in rolled nanolayered metallic composites. Acta Mater 53:221–226

    Google Scholar 

  115. Zhang X, Li N, Anderoglu O, Wang H, Swadener JG, Höchbauer T, Misra A, Hoagland RG (2007) Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation. Nucl Instr Meth Phys Res B 261:1129–1132

    Google Scholar 

  116. Misra A, Demkowicz MJ, Zhang X, Hoagland RG (2007) The radiation damage tolerance of ultra-high strength nanolayered composites. J Miner Metals Mater Soc 59:62–65

    Google Scholar 

  117. Han WZ, Misra A, Mara NA, Germann TC, Baldwin JK, Shimada T, Luo SN (2011) Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos Mag 91:4172–4185

    Google Scholar 

  118. Misra A, Hoagland RG (2005) Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J Mater Res 20:2046–2054

    Google Scholar 

  119. Anderoglu O, Misra A, Wang H, Zhang X (2008) Thermal stability of sputtered Cu films with nanoscale growth twins. J Appl Phys 103:094322

    Google Scholar 

  120. Zheng S, Beyerlein IJ, Carpenter JS, Kang K, Wang J, Han W, Mara NA (2013) High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun 4:1696

    Google Scholar 

  121. Misra A (2006) Mechanical behavior of metallic nanolaminates. In: Hannink RHJ, Hill AJ (eds) Nanostructure control of materials. Woodhead, Cambridge, pp 146–176

    Google Scholar 

  122. Barnett SA, Shinn M (1994) Plastic and elastic properties of compositionally modulated thin films. Ann Rev Mater Sci 24:481–511

    Google Scholar 

  123. Smith D (1995) Thin-film deposition: principles and practice. McGraw Hill Professional, New York

    Google Scholar 

  124. Jankowski AF (1995) Metallic multilayers at the nanoscale. Nanostructured Mater 6:179–190

    Google Scholar 

  125. Ohring M (2001) Materials science of thin films, 2nd edn. Academic Press, San Diego

    Google Scholar 

  126. Seshan K (2012) Handbook of thin film deposition, 3rd edn. William Andrew, Oxford

    Google Scholar 

  127. Geng H (2005) Semiconductor manufacturing handbook, 1st edn. McGraw-Hill Professional, Blacklick

    Google Scholar 

  128. Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing, 2nd edn. William Andrew, Norwich

    Google Scholar 

  129. Emmerson CM, Shen T-H, Evans SD, Allinson H (1996) A combined in situ optical reflectance–electron diffraction study of Co/Cu and Co/Au multilayers grown by molecular beam epitaxy. Appl Phys Lett 68:3740–3742

    Google Scholar 

  130. Westerwaal RJ, Slaman M, Broedersz CP, et al (2006) Optical, structural, and electrical properties of Mg2NiH4 thin films in situ grown by activated reactive evaporation. J Appl Phys 100:063518

    Google Scholar 

  131. Thompson CV (1990) Grain growth in thin films. Ann Rev Mater Sci 20:245–268

    Google Scholar 

  132. Thompson CV (2000) Structure evolution during processing of polycrystalline films. Ann Rev Mater Sci 30:159–190

    Google Scholar 

  133. Wuhrer R, Yeung WY (2004) A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings. Scr Mater 50:1461–1466

    Google Scholar 

  134. Donohue A, Spaepen F, Hoagland RG, Misra A (2007) Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl Phys Lett 91:241905

    Google Scholar 

  135. Fu EG, Li N, Misra A, Hoagland RG, Wang H, Zhang X (2008) Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater Sci Eng A 493:283–287

    Google Scholar 

  136. Blum W (1921) The structure and properties of alternately deposited metals. Trans Am Electrochem Soc 40:307–320

    Google Scholar 

  137. Alper M, Attenborough K, Hart R, Lane SJ, Lashmore DS, Younes C, Schwarzacher W (1993) Giant magnetoresistance in electrodeposited superlattices. Appl Phys Lett 63:2144–2146

    Google Scholar 

  138. Schwarzacher W, Lashmore DS (1996) Giant magnetoresistance in electrodeposited films. IEEE Trans Magn 32:3133–3153

    Google Scholar 

  139. Ross CA (1994) Electrodeposited multilayer thin films. Ann Rev Mater Sci 24:159–188

    Google Scholar 

  140. Bakonyi I, Péter L (2010) Electrodeposited multilayer films with giant magnetoresistance (GMR): progress and problems. Prog Mater Sci 55:107–245

    Google Scholar 

  141. Haseeb ASMA, Celis JP, Roos JR (1994) Dual‐Bath electrodeposition of Cu/Ni compositionally modulated multilayers. J Electrochem Soc 141:230–237

    Google Scholar 

  142. Tóth‐Kádár E, Péter L, Becsei T, Tóth J, Pogány L, Tarnóczi T, Kamasa P, Láng G, Cziráki Á, Schwarzacher W (2000) Preparation and magnetoresistance characteristics of electrodeposited Ni‐Cu alloys and Ni‐Cu/Cu multilayers. J Electrochem Soc 147:3311–3318

    Google Scholar 

  143. Yahalom J, Tessier DF, Timsit RS, Rosenfeld AM, Mitchell DF, Robinson PT (1989) Structure of composition-modulated Cu/Ni thin films prepared by electrodeposition. J Mater Res 4:755–758

    Google Scholar 

  144. Liu Y, Bufford D, Wang H, Sun C, Zhang X (2011) Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater 59:1924–1933

    Google Scholar 

  145. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. J Miner Metals Mater Soc 58:33–39

    Google Scholar 

  146. Bachmaier A, Pippan R (2013) Generation of metallic nanocomposites by severe plastic deformation. Int Mater Rev 58:41–62

    Google Scholar 

  147. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater 47:579–583

    Google Scholar 

  148. Lim SCV, Rollett AD (2009) Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu–Nb composite. Mater Sci Eng A 520:189–196

    Google Scholar 

  149. Carpenter JS, Vogel SC, LeDonne JE, Hammon DL, Beyerlein IJ, Mara NA (2012) Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding. Acta Mater 60:1576–1586

    Google Scholar 

  150. Wang J, Kang K, Zhang RF, Zheng SJ, Beyerlein IJ, Mara NA (2012) Structure and property of interfaces in ARB Cu/Nb laminated composites. J Miner Metals Mater Soc 64:1208–1217

    Google Scholar 

  151. Tayyebi M, Eghbali B (2013) Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding. Mater Sci Eng A 559:759–764

    Google Scholar 

  152. Huang B, Ishihara KN, Shingu PH (2001) Preparation of high strength bulk nano-scale Fe/Cu multilayers by repeated pressing-rolling. J Mater Sci Lett 20:1669–1670

    Google Scholar 

  153. Yasuna K, Terauchi M, Otsuki A, Ishihara KN, Shingu PH (1997) Bulk metallic multilayers produced by repeated press-rolling and their perpendicular magnetoresistance. J Appl Phys 82:2435

    Google Scholar 

  154. Shahabi HS, Manesh HD (2009) Micro-structural evaluation of Cu/Nb nano-layered composites produced by repeated press and rolling process. J Alloys Compd 482:526–534

    Google Scholar 

  155. Sahay SS, Ravichandran KS, Byrne JG (1996) Nanoscale brass/steel multilayer composites produced by cold rolling. Metall Mater Trans A 27:2383–2385

    Google Scholar 

  156. Kavarana FH, Ravichandran KS, Sahay SS (2000) Nanoscale steel-brass multilayer laminates made by cold rolling: microstructure and tensile properties. Scr Mater 42:947–954

    Google Scholar 

  157. Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824

    Google Scholar 

  158. Yang GH, Zhao B, Gao Y, Pan F (2005) Investigation of nanoindentation on Co/Mo multilayers by the continuous stiffness measurement technique. Surf Coat Technol 191:127–133

    Google Scholar 

  159. Jankowski AF, Hayes JP, Saw CK (2007) Dimensional attributes in enhanced hardness of nanocrystalline Ta–V nanolaminates. Philos Mag 87:2323–2334

    Google Scholar 

  160. Zhu XY, Liu XJ, Zong RL, Zeng F, Pan F (2010) Microstructure and mechanical properties of nanoscale Cu/Ni multilayers. Mater Sci Eng A 527:1243–1248

    Google Scholar 

  161. Ham B, Zhang X (2011) High strength Mg/Nb nanolayer composites. Mater Sci Eng A 528:2028–2033

    Google Scholar 

  162. Bufford D, Bi Z, Jia QX, Wang H, Zhang X (2012) Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl Phys Lett 101:223112

    Google Scholar 

  163. Zhang JY, Liu Y, Chen J, Chen Y, Liu G, Zhang X, Sun J (2012) Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater Sci Eng A 552:392–398

    Google Scholar 

  164. Beyerlein IJ, Mara NA, Wang J, Carpenter JS, Zheng SJ, Han WZ, Zhang RF, Kang K, Nizolek T, Pollock TM (2012) Structure–property-functionality of bimetal interfaces. J Miner Metals Mater Soc 64:1192–1207

    Google Scholar 

  165. Wen SP, Zong RL, Zeng F, Guo S, Pan F (2009) Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers. Appl Surf Sci 255:4558–4562

    Google Scholar 

  166. Li YP, Zhu XF, Zhang GP, Tan J, Wang W, Wu B (2010) Investigation of deformation instability of Au/Cu multilayers by indentation. Philos Mag 90:3049–3067

    Google Scholar 

  167. Tench DM, White JT (1991) Tensile properties of nanostructured Ni-Cu multilayered materials prepared by electrodeposition. J Electrochem Soc 138:3757–3758

    Google Scholar 

  168. Huang H, Spaepen F (2000) Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater 48:3261–3269

    Google Scholar 

  169. Mara NA, Bhattacharyya D, Hoagland RG, Misra A (2008) Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr Mater 58:874–877

    Google Scholar 

  170. Carpenter JS, Misra A, Uchic MD, Anderson PM (2012) Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression. Appl Phys Lett 101:051901

    Google Scholar 

  171. Zhang JY, Lei S, Liu Y, Niu JJ, Chen Y, Liu G, Zhang X, Sun J (2012) Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Mater 60:1610–1622

    Google Scholar 

  172. Kim Y, Budiman AS, Baldwin JK, Mara NA, Misra A, Han SM (2012) Microcompression study of Al-Nb nanoscale multilayers. J Mater Res 27:592–598

    Google Scholar 

  173. Gram MD, Carpenter JS, Payzant EA, Misra A, Anderson PM. Forward and reverse plastic flow in nanoscale layers: results from heated diffraction studies. Mater Res Lett (submitted)

    Google Scholar 

  174. Carpenter JS, Misra A, Anderson PM (2012) Achieving maximum hardness in semi-coherent multilayer thin films with unequal layer thickness. Acta Mater 60:2625–2636

    Google Scholar 

  175. Carpenter JS, Zheng SJ, Zhang RF, Vogel SC, Beyerlein IJ, Mara NA (2013) Thermal stability of Cu–Nb nanolamellar composites fabricated via accumulative roll bonding. Philos Mag 93:718–735

    Google Scholar 

  176. Mata M, Anglada M, Alcalá J (2002) Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J Mater Res 17:964–976

    Google Scholar 

  177. Onyewuenyi OA, Hirth JP (1982) Plastic instability in U-notched bend specimens of spheroidized AIS11090 steel. Metall Trans A 13:2209–2218

    Google Scholar 

  178. Argon AS (1973) Stability of plastic deformation. The Inhomogeneity of plastic deformation. ASM Seminar, pp 161–189

    Google Scholar 

  179. Valiev R (2002) Materials science: nanomaterial advantage. Nature 419:887–889

    Google Scholar 

  180. Anderson PM, Bingert JF, Misra A, Hirth JP (2003) Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater 51:6059–6075

    Google Scholar 

  181. Mara NA, Tamayo T, Sergueeva AV, Zhang X, Misra A, Mukherjee AK (2007) The effects of decreasing layer thickness on the high temperature mechanical behavior of Cu/Nb nanoscale multilayers. Thin Solid Films 515:3241–3245

    Google Scholar 

  182. Mara N, Sergueeva A, Misra A, Mukherjee AK (2004) Structure and high-temperature mechanical behavior relationship in nano-scaled multilayered materials. Scripta Mater 50:803–806

    Google Scholar 

  183. Mara NA, Misra A, Hoagland RG, Sergueeva AV, Tamayo T, Dickerson P, Mukherjee AK (2008) High-temperature mechanical behavior/microstructure correlation of Cu/Nb nanoscale multilayers. Mater Sci Eng A 493:274–282

    Google Scholar 

  184. Lewis AC, Heerden DV, Weihs TP, Josell D (2003) Creep deformation in multilayered and microlaminate materials. J Miner Metals Mater Soc 55:34–37

    Google Scholar 

  185. Huang P, Wang F, Xu M, Lu TJ, Xu KW (2011) Strain rate sensitivity of unequal grained nano-multilayers. Mater Sci Eng A 528:5908–5913

    Google Scholar 

  186. Wen SP, Zeng F, Gao Y, Pan F (2006) Indentation creep behavior of nano-scale Ag/Co multilayers. Scr Mater 55:187–190

    Google Scholar 

  187. Zhu XY, Liu XJ, Zeng F, Pan F (2010) Room temperature nanoindentation creep of nanoscale Ag/Fe multilayers. Mater Lett 64:53–56

    Google Scholar 

  188. Josell D, Weihs TP, Gao H (2002) Diffusional creep: stresses and strain rates in thin films and multilayers. MRS Bull 27:39–44

    Google Scholar 

  189. Wang J, Anderson PM (2005) Pinch-off maps for the design of morphologically stable multilayer thin films with immiscible phases. Acta Mater 53:5089–5099

    Google Scholar 

  190. Koehler JS (1970) Attempt to design a strong solid. Phys Rev B 2:547

    Google Scholar 

  191. Freund LB, Suresh S (2003) Thin film materials: stress. Cambridge University Press, Defect Formation and Surface Evolution

    Google Scholar 

  192. Ruud JA, Witvrouw A, Spaepen F (1993) Bulk and interface stresses in silver‐nickel multilayered thin films. J Appl Phys 74:2517–2523

    Google Scholar 

  193. Labat S, Gergaud P, Thomas O, Gilles B, Marty A (2000) Interdependence of elastic strain and segregation in metallic multilayers: an x-ray diffraction study of (111) Au/Ni multilayers. J Appl Phys 87:1172–1181

    Google Scholar 

  194. Berger S, Spaepen F (1995) The Ag/Cu interface stress. Nanostructured Mater 6:201–204

    Google Scholar 

  195. Bain JA, Chyung LJ, Brennan S, Clemens BM (1991) Elastic strains and coherency stresses in Mo/Ni multilayers. Phys Rev B 44:1184–1192

    Google Scholar 

  196. Girault B, Villain P, Le Bourhis E, Goudeau P, Renault P-O (2006) X-ray diffraction analysis of the structure and residual stresses of W/Cu multilayers. Surf Coat Technol 201:4372–4376

    Google Scholar 

  197. Shull AL, Spaepen F (1996) Measurements of stress during vapor deposition of copper and silver thin films and multilayers. J Appl Phys 80:6243–6256

    Google Scholar 

  198. Ramaswamy V, Nix WD, Clemens BM (2004) Coherency and surface stress effects in metal multilayers. Scr Mater 50:711–715

    Google Scholar 

  199. Misra A, Kung H, Mitchell TE, Nastasi M (2000) Residual stresses in polycrystalline Cu/Cr multilayered thin films. J Mater Res 15:756–763

    Google Scholar 

  200. Zhang X, Misra A (2004) Residual stresses in sputter-deposited copper/330 stainless steel multilayers. J Appl Phys 96:7173–7178

    Google Scholar 

  201. Josell D, Bonevich JE, Shao I, Cammarata RC (1999) Measuring the interface stress: silver/nickel interfaces. J Mater Res 14:4358–4365

    Google Scholar 

  202. Aydıner CC, Brown DW, Mara NA, Almer J, Misra A (2009) In situ x-ray investigation of freestanding nanoscale Cu–Nb multilayers under tensile load. Appl Phys Lett 94:031906

    Google Scholar 

  203. Gumbsch P, Daw M (1991) Interface stresses and their effects on the elastic moduli of metallic multilayers. Phys Rev B 44:3934–3938

    Google Scholar 

  204. Daniels BJ, Nix WD, Clemens BM (1994) Effect of structure, stress, strain, and alloying on the hardness of Fe(001)/Pt(001) epitaxial multilayers. MRS Symp Proceed 356:373–378

    Google Scholar 

  205. Chocyk D, Proszynski A, Gladyszewski G, Labat S, Gergaud P, Thomas O (2002) Stresses in multilayer systems: test of the sin2Ψ method. Adv Eng Mater 4:557–561

    Google Scholar 

  206. Clemens BM, Nix WD, Ramaswamy V (2000) Surface-energy-driven intermixing and its effect on the measurement of interface stress. J Appl Phys 87:2816–2820

    Google Scholar 

  207. Stoudt MR, Ricker RE, Cammarata RC (2001) The influence of a multilayered metallic coating on fatigue crack nucleation. Int J Fatigue 23(Suppl 1):215–223

    Google Scholar 

  208. Hommel M, Kraft O, Arzt E (1999) A new method to study cyclic deformation of thin films in tension and compression. J Mater Res 14:2373–2376

    Google Scholar 

  209. Wang Y-C, Hoechbauer T, Swadener JG, Misra A, Hoagland RG, Nastasi M (2006) Mechanical fatigue measurement via a vibrating cantilever beam for self-supported thin solid films. Exper Mech 46:503–517

    Google Scholar 

  210. Schwaiger R, Kraft O (1999) High cycle fatigue of thin silver films investigated by dynamic microbeam deflection. Scr Mater 41:823–829

    Google Scholar 

  211. Wang Y-C, Misra A, Hoagland RG (2006) Fatigue properties of nanoscale Cu/Nb multilayers. Scripta Mater 54:1593–1598

    Google Scholar 

  212. Zhu XF, Zhang GP (2009) Tensile and fatigue properties of ultrafine Cu–Ni multilayers. J Phys D Appl Phys 42:055411

    Google Scholar 

  213. Zhu XF, Zhang GP, Yan C, Zhu SJ, Sun J (2010) Scale-dependent fracture mode in Cu–Ni laminate composites. Philos Mag Lett 90:413–421

    Google Scholar 

  214. Zhang JY, Zhang X, Liu G, Zhang GJ, Sun J (2011) Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater Sci Eng A 528:2982–2987

    Google Scholar 

  215. Lashmore DS, Thomson R (1992) Cracks and dislocations in face-centered cubic metallic multilayers. J Mater Res 7:2379–2386

    Google Scholar 

  216. Zhu XF, Li YP, Zhang GP, Tan J, Liu Y (2008) Understanding nanoscale damage at a crack tip of multilayered metallic composites. Appl Phys Lett 92:161905

    Google Scholar 

  217. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 64:747

    Google Scholar 

  218. Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28

    Google Scholar 

  219. Hirth JP, Lothe J (1992) Theory of dislocations. Krieger, Malabar

    Google Scholar 

  220. Nix WD (1989) Mechanical properties of thin films. Metall Trans A 20:2217–2245

    Google Scholar 

  221. Friedman LH, Chrzan DC (1998) Scaling theory of the Hall–Petch relation for multilayers. Phys Rev Lett 81:2715–2718

    Google Scholar 

  222. Anderson PM, Foecke T, Hazzledine PM (1999) Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull 24:27

    Google Scholar 

  223. Tu K, Mayer JW, Feldman LC (1992) Electronic thin film science: for electrical engineers and materials scientists. Macmillan, New York

    Google Scholar 

  224. Kramer DE, Foecke T (2002) Transmission electron microscopy observations of deformation and fracture in nanolaminated Cu-Ni thin films. Philos Mag A 82:3375–3381

    Google Scholar 

  225. Dehm G, Balk TJ, Edongué H, Arzt E (2003) Small-scale plasticity in thin Cu and Al films. Microelectron Engin 70:412–424

    Google Scholar 

  226. Zhang RF, Wang J, Beyerlein IJ, Germann TC (2011) Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scr Mater 65:1022–1025

    Google Scholar 

  227. Li N, Wang J, Misra A, Huang JY (2012) Direct observations of confined layer slip in Cu/Nb multilayers. Microsc Microanal 18:1155–1162

    Google Scholar 

  228. Wei QM, Li N, Mara N, Nastasi M, Misra A (2011) Suppression of irradiation hardening in nanoscale V/Ag multilayers. Acta Mater 59:6331–6340

    Google Scholar 

  229. Wei Q, Misra A (2010) Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in V/Ag multilayers. Acta Mater 58:4871–4882

    Google Scholar 

  230. Akasheh F, Zbib HM, Hirth JP, Hoagland RG, Misra A (2007) Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. J Appl Phys 101:084314

    Google Scholar 

  231. Akasheh F, Zbib HM, Hirth JP, Hoagland RG, Misra A (2007) Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers. J Appl Phys 102:034314

    Google Scholar 

  232. Nix WD (1998) Yielding and strain hardening of thin metal films on substrates. Scr Mater 39:545–554

    Google Scholar 

  233. Anderson PM, Li C (1995) Hall–Petch relations for multilayered materials. Nanostruct Mater 5:349–362

    Google Scholar 

  234. Chu HJ, Wang J, Beyerlein IJ, Pan E (2013) Dislocation models of interfacial shearing induced by an approaching lattice glide dislocation. Int J Plast 41:1–13

    Google Scholar 

  235. Embury JD, Hirth JP (1994) On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall Mater 42:2051–2056

    Google Scholar 

  236. Mitlin D, Misra A, Radmilovic V, Nastasi M, Hoagland R, Embury DJ, Hirth JP, Mitchell TE (2004) Formation of misfit dislocations in nanoscale Ni–Cu bilayer films. Philos Mag 84:719–736

    Google Scholar 

  237. Mitlin D, Misra A, Mitchell TE, Hoagland RG, Hirth JP (2004) Influence of overlayer thickness on the density of Lomer dislocations in nanoscale Ni–Cu bilayer thin films. Appl Phys Lett 85:1686–1688

    Google Scholar 

  238. Mitlin D, Misra A, Mitchell TE, Hirth JP, Hoagland RG (2005) Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films. Philos Mag 85:3379–3392

    Google Scholar 

  239. Inglefield HE, Bochi G, Ballentine CA, O’Handley RC, Thompson CV (1996) Perpendicular magnetic anisotropy in epitaxial Cu/Ni/Cu/Si (001). Thin Solid Films 275:155–158

    Google Scholar 

  240. Misra A, Kung H, Hammon D, Hoagland RG, Nastasi M (2003) Damage mechanisms in nanolayered metallic composites. Int J Damage Mech 12:365–376

    Google Scholar 

  241. Misra A, Hirth JP, Kung H (2002) Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos Mag A 82:2935–2951

    Google Scholar 

  242. Verdier M (2004) Plasticity in fine scale semi-coherent metallic films and multilayers. Scr Mater 50:769–773

    Google Scholar 

  243. Lamm AV, Anderson PM (2004) Yield maps for nanoscale metallic multilayers. Scr Mater 50:757–761

    Google Scholar 

  244. Hoagland RG, Mitchell TE, Hirth JP, Kung H (2002) On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos Mag A 82:643

    Google Scholar 

  245. Anderson PM, Carpenter JS (2010) Estimates of interfacial properties in Cu/Ni multilayer thin films using hardness data. Scripta Mater 62:325–328

    Google Scholar 

  246. Wang J, Misra A (2011) An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci 15:20–28

    Google Scholar 

  247. Wang J, Misra A, Hoagland RG, Hirth JP (2012) Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater 60:1503–1513

    Google Scholar 

  248. Was GS, Foecke T (1996) Deformation and fracture in microlaminates. Thin Solid Films 286:1–31

    Google Scholar 

  249. Wang J, Hoagland RG, Misra A (2009) Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale. Scr Mater 60:1067–1072

    Google Scholar 

  250. Misra A, Verdier M, Kung H, Embury JD, Hirth JP (1999) Deformation mechanism maps for polycrystalline metallic multilayers. Scr Mater 41:973–979

    Google Scholar 

  251. Li Q, Anderson PM (2003) Dislocation confinement and ultimate strength in nanoscale metallic multilayers. MRS Symp Proc 791:Q5.19

    Google Scholar 

  252. Li Q, Anderson PM (2004) A three-dimensional cellular automaton model of dislocation motion in FCC crystals. Modell Simul Mater Sci Eng 12:929

    Google Scholar 

  253. McKeown J, Misra A, Kung H, Hoagland RG, Nastasi M (2002) Microstructures and strength of nanoscale Cu–Ag multilayers. Scripta Mater 46:593–598

    Google Scholar 

  254. Yadav SK, Ramprasad R, Misra A, Liu X-Y (2012) First-principles study of shear behavior of Al, TiN, and coherent Al/TiN interfaces. J Appl Phys 111:083505

    Google Scholar 

  255. Kong Y, Shen L, Proust G, Ranzi G (2011) Al–Pd interatomic potential and its application to nanoscale multilayer thin films. Mater Sci Eng A 530:73–86

    Google Scholar 

  256. Mastorakos IN, Zbib HM, Bahr DF (2009) Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl Phys Lett 94:173114

    Google Scholar 

  257. Mastorakos IN, Bellou A, Bahr DF, Zbib HM (2011) Size-dependent strength in nanolaminate metallic systems. J Mater Res 26:1179–1187

    Google Scholar 

  258. Yan JW, Zhu XF, Zhang GP, Yan C (2013) Evaluation of plastic deformation ability of Cu/Ni/W metallic multilayers. Thin Solid Films 527:227–231

    Google Scholar 

  259. Saraev D, Miller RE (2006) Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings. Acta Mater 54:33–45

    Google Scholar 

  260. Medyanik SN, Shao S (2009) Strengthening effects of coherent interfaces in nanoscale metallic bilayers. Comput Mater Sci 45:1129–1133

    Google Scholar 

  261. Li J, Lu H, Ni Y, Mei J (2011) Quasicontinuum study the influence of misfit dislocation interactions on nanoindentation. Comput Mater Sci 50:3162–3170

    Google Scholar 

  262. Cheng D, Yan ZJ, Yan L (2007) Misfit dislocation network in Cu/Ni multilayers and its behaviors during scratching. Thin Solid Films 515:3698–3703

    Google Scholar 

  263. Hoagland RG, Kurtz RJ, Henager CH Jr (2004) Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Mater 50:775–779

    Google Scholar 

  264. Henager CH Jr, Hoagland R (2004) A rebound mechanism for misfit dislocation creation in metallic nanolayers. Scr Mater 50:701–705

    Google Scholar 

  265. Kamat SV, Hirth JP (1990) Dislocation injection in strained multilayer structures. J Appl Phys 67:6844–6850

    Google Scholar 

  266. Rao SI, Hazzledine PM (2000) Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system. Philos Mag A 80:2011–2040

    Google Scholar 

  267. Henager CH Jr, Kurtz RJ, Hoagland RG (2004) Interactions of dislocations with disconnections in fcc metallic nanolayered materials. Philoso Mag 84:2277–2303

    Google Scholar 

  268. Wang J, Hoagland RG, Misra A (2008) Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition. J Mater Res 23:1009–1014

    Google Scholar 

  269. Wang J, Hoagland RG, Hirth JP, Misra A (2008) Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces. Acta Mater 56:3109–3119

    Google Scholar 

  270. Demkowicz MJ, Wang J, Hoagland RG (2008) Interfaces between dissimilar crystalline solids. In: Hirth JP (ed) Dislocations in solids. Elsevier, Amsterdam, pp 141–205

    Google Scholar 

  271. Wang J, Hoagland RG, Liu XY, Misra A (2011) The influence of interface shear strength on the glide dislocation–interface interactions. Acta Mater 59:3164–3173

    Google Scholar 

  272. Wang J, Hoagland RG, Misra A (2009) Room-temperature dislocation climb in metallic interfaces. Appl Phys Lett 94:131910

    Google Scholar 

  273. Zhang RF, Wang J, Beyerlein IJ, Misra A, Germann TC (2012) Atomic-scale study of nucleation of dislocations from fcc–bcc interfaces. Acta Mater 60:2855–2865

    Google Scholar 

  274. Demkowicz MJ, Hoagland RG, Hirth JP (2008) Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys Rev Lett 100:136102

    Google Scholar 

  275. Kang K, Wang J, Beyerlein IJ (2012) Atomic structure variations of mechanically stable fcc-bcc interfaces. J Appl Phys 111:053531

    Google Scholar 

  276. Kang K, Wang J, Zheng SJ, Beyerlein IJ (2012) Minimum energy structures of faceted, incoherent interfaces. J Appl Phys 112:073501

    Google Scholar 

  277. Keralavarma SM, Benzerga AA (2007) A discrete dislocation analysis of strengthening in bilayer thin films. Modell Simul Mater Sci Eng 15:S239

    Google Scholar 

  278. Anderson PM, Li C (1993) Crack-dislocation modeling of ductile-to-brittle transitions in multilayered materials. MRS Symp Proceed 308:731

    Google Scholar 

  279. Ghoniem NM, Han X (2005) Dislocation motion in anisotropic multilayer materials. Philos Mag 85:2809–2830

    Google Scholar 

  280. Fertig RS, Baker SP (2009) Simulation of dislocations and strength in thin films: a review. Prog Mater Sci 54:874–908

    Google Scholar 

  281. Pant P, Schwarz KW, Baker SP (2003) Dislocation interactions in thin FCC metal films. Acta Mater 51:3243–3258

    Google Scholar 

  282. Fertig RS III, Baker SP (2010) Dislocation dynamics simulations of dislocation interactions and stresses in thin films. Acta Mater 58:5206–5218

    Google Scholar 

  283. Fertig RS III, Baker SP (2011) Threading dislocation interactions in an inhomogeneous stress field: a statistical model. Scr Mater 65:384–387

    Google Scholar 

  284. Akasheh F, Zbib HM (2008) Multiscale modeling and simulation of deformation in nanoscale metallic multilayered composites. In: Kwon YW, Allen DH, Talreja R (eds) Multiscale modeling and simulation of composite materials and structures. Springer US, New York, pp 235–270

    Google Scholar 

  285. Quek SS, Xiang Y, Zhang YW, Srolovitz DJ, Lu C (2006) Level set simulation of dislocation dynamics in thin films. Acta Mater 54:2371–2381

    Google Scholar 

  286. Quek SS, Wu Z, Zhang Y-W, Xiang Y, Srolovitz DJ (2007) Dislocation junctions as barriers to threading dislocation migration. Appl Phys Lett 90:011905

    Google Scholar 

  287. Quek SS, Zhang YW, Xiang Y, Srolovitz DJ (2010) Dislocation cross-slip in heteroepitaxial multilayer films. Acta Mater 58:226–234

    Google Scholar 

  288. Li Q, Anderson PM (2005) Dislocation-based modeling of the mechanical behavior of epitaxial metallic multilayer thin films. Acta Mater 53:1121–1134

    Google Scholar 

  289. Wang YU, Jin YM, Khachaturyan AG (2003) Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films. Acta Mater 51:4209–4223

    Google Scholar 

  290. Tan XH, Shen Y-L (2005) Modeling analysis of the indentation-derived yield properties of metallic multilayered composites. Compos Sci Technol 65:1639–1646

    Google Scholar 

  291. Tang G, Shen Y-L, Chawla N (2008) Plastic deformation during indentation unloading in multilayered materials. J Appl Phys 104:116102

    Google Scholar 

  292. Tang G, Shen Y-L, Singh DRP, Chawla N (2010) Indentation behavior of metal-ceramic multilayers at the nanoscale: numerical analysis and experimental verification. Acta Mater 58:2033–2044

    Google Scholar 

  293. Singh DRP, Chawla N, Tang G, Shen Y-L (2010) Micropillar compression of Al/SiC nanolaminates. Acta Mater 58:6628–6636

    Google Scholar 

  294. Frank FC, van der Merwe JH (1949) One-dimensional dislocations. I. static theory. Proc R Soc Lond A 198:205–216

    Google Scholar 

  295. Hirth JP, Feng X (1990) Critical layer thickness for misfit dislocation stability in multilayer structures. J Appl Phys 67:3343–3349

    Google Scholar 

  296. Feng X, Hirth JP (1992) Critical layer thicknesses for inclined dislocation stability in multilayer structures. J Appl Phys 72:1386–1394

    Google Scholar 

  297. Kreidler ER, Anderson PM (1996) Orowan-based deformation model for layered metallic materials. MRS Symp Proc 434:159–172

    Google Scholar 

  298. Chu X, Barnett SA (1995) Model of superlattice yield stress and hardness enhancements. J Appl Phys 77:4403–4411

    Google Scholar 

  299. Rao SI, Hazzledine PM, Dimiduk DM (1995) Interfacial strengthening in semi-coherent metallic multilayers. MRS Symp Proc 362:67

    Google Scholar 

  300. Friedman LH (2004) Towards a full analytic treatment of the Hall–Petch behavior in multilayers: putting the pieces together. Scr Mater 50:763–767

    Google Scholar 

  301. Fang L, Friedman LH (2007) Analytic treatment of metallic multilayer strength at all length scales: influence of dislocation sources. Acta Mater 55:1505–1514

    Google Scholar 

  302. Schoeck G (2005) The Peierls model: progress and limitations. Mater Sci Eng A 400–401:7–17

    Google Scholar 

  303. Shen Y, Cheng X (2009) Dislocation movement over the Peierls barrier in the semi-discrete variational Peierls framework. Scr Mater 61:457–460

    Google Scholar 

  304. Shen Y, Anderson PM (2007) Transmission of a screw dislocation across a coherent, non-slipping interface. J Mech Phys Solids 55:956–979

    Google Scholar 

  305. Anderson PM, Li Z (2001) A Peierls analysis of the critical stress for transmission of a screw dislocation across a coherent, sliding interface. Mater Sci Eng A 319–321:182–187

    Google Scholar 

  306. Shen Y, Anderson PM (2006) Transmission of a screw dislocation across a coherent, slipping interface. Acta Mater 54:3941–3951

    Google Scholar 

  307. Shehadeh MA, Lu G, Banerjee S, Kioussis N, Ghoniem N (2007) Dislocation transmission across the Cu/Ni interface: a hybrid atomistic–continuum study. Philos Mag 87:1513–1529

    Google Scholar 

  308. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Google Scholar 

  309. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20

    Google Scholar 

  310. Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S (2001) Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater 49:3899–3918

    Google Scholar 

  311. Cheng Y-T, Cheng C-M (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R 44:91–149

    Google Scholar 

  312. Gram MD, Carpenter JS, Misra A, Anderson PM. Interpreting hardness data in nanoscale multilayer thin films (in preparation)

    Google Scholar 

  313. Shen Y-L, Blada CB, Williams JJ, Chawla N (2012) Cyclic indentation behavior of metal–ceramic nanolayered composites. Mater Sci Eng A 557:119–125

    Google Scholar 

  314. Tang G, Shen Y, Singh D, Chawla N (2008) Analysis of indentation-derived effective elastic modulus of metal-ceramic multilayers. Int J Mech Mater Des 4:391–398

    Google Scholar 

  315. Zhang H, Schuster BE, Wei Q, Ramesh KT (2006) The design of accurate micro-compression experiments. Scripta Mater 54:181–186

    Google Scholar 

  316. Shade PA, Wheeler R, Choi YS, Uchic MD, Dimiduk DM, Fraser HL (2009) A combined experimental and simulation study to examine lateral constraint effects on microcompression of single-slip oriented single crystals. Acta Mater 57:4580–4587

    Google Scholar 

  317. Kiener D, Motz C, Dehm G (2009) Micro-compression testing: a critical discussion of experimental constraints. Mater Sci Eng A 505:79–87

    Google Scholar 

  318. Schwaiger R, Weber M, Moser B, Gumbsch P, Kraft O (2012) Mechanical assessment of ultrafine-grained nickel by microcompression experiment and finite element simulation. J Mater Res 27:266–277

    Google Scholar 

  319. Lotfian S, Rodríguez M, Yazzie KE, Chawla N, Llorca J, Molina-Aldareguía JM (2013) High temperature micropillar compression of Al/SiC nanolaminates. Acta Mater. doi:10.1016/j.actamat.2013.04.013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, P.M., Carpenter, J.S., Gram, M.D., Li, L. (2014). Mechanical Properties of Nanostructured Metals. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_20

Download citation

Publish with us

Policies and ethics