Skip to main content

What Can Be Computed without Communications?

  • Conference paper
Book cover Structural Information and Communication Complexity (SIROCCO 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7355))

Abstract

This paper addresses the following 2-player problem. Alice (resp., Bob) receives a boolean x (resp., y) as input, and must return a boolean a (resp., b) as output. A game between Alice and Bob is defined by a pair (δ,f) of boolean functions. The objective of Alice and Bob playing game (δ,f) is, for every inputs x and y, to output values a and b, respectively, satisfying δ(a,b) = f(x,y), in absence of any communication between the two players.It is known that, for xor-games, that is, games equivalent, up to individual reversible transformations, to a game (δ,f) with δ(a,b) = a ⊕ b, the ability for the players to use entangled quantum bits (qbits) helps: there exist a distributed protocol for the chsh game, using quantum correlations, for which the probability that the two players produce a successful output is higher than the maximum probability of success of any classical distributed protocol for that game, even when using shared randomness.

In this paper, we show that, apart from xor-games, quantum correlations does not help, in the sense that, for every such game, there exists a classical protocol (using shared randomness) whose probability of success is at least as large as the one of any protocol using quantum correlations. This result holds for both worst case and average case analysis. It is achieved by considering a model stronger than quantum correlations, the non-signaling model, for which we show that, if the game is not an xor-game, then shared randomness is a sufficient resource for the design of optimal protocols. These results provide an invitation to revisit the theory of distributed checking, a.k.a. distributed verification. Indeed, the literature dealing with this theory is mostly focusing on decision functions δ equivalent to the and-operator. This paper demonstrates that such a decision function may not well be suited for taking benefit of the computational power of quantum correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., Roberts, D.: Nonlocal correlations as an information-theoretic resource. Physical Review A 71(2), 1–11 (2005)

    Article  Google Scholar 

  2. Barrett, J., Pironio, S.: Popescu-Rohrlich correlations as a unit of nonlocality. Phys. Rev. Lett. 95(14) (2005)

    Google Scholar 

  3. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)

    Google Scholar 

  4. Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Non-locality and communication complexity. Reviews of Modern Physics 82, 665–698 (2010)

    Article  Google Scholar 

  5. Cirel’son, B.S.: Quantum generalizations of bell’s inequality. Letters in Math. Phys. 4(2), 93–100 (1980)

    Article  MathSciNet  Google Scholar 

  6. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Physical Review Letters 23(15), 880–884 (1969)

    Article  Google Scholar 

  7. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. In: 43rd ACM Symp. on Theory of Computing, STOC (2011)

    Google Scholar 

  8. Dupuis, F., Gisin, N., Hasidim, A., Allan Méthot, A., Pilpel, H.: No nonlocal box is universal. J. Math. Phys. 48(082107) (2007)

    Google Scholar 

  9. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Physical Review 47(10), 777–780 (1935)

    Article  MATH  Google Scholar 

  10. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 708–717 (2011)

    Google Scholar 

  11. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-Free Computing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 333–347. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Fraigniaud, P., Rajsbaum, S., Travers, C.: Universal distributed checkers and orientation-detection tasks (submitted, 2012)

    Google Scholar 

  13. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Computing 22, 215–233 (2010)

    Article  Google Scholar 

  14. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Foundations of Physics 24(3), 379–385 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arfaoui, H., Fraigniaud, P. (2012). What Can Be Computed without Communications?. In: Even, G., Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2012. Lecture Notes in Computer Science, vol 7355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31104-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31104-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31103-1

  • Online ISBN: 978-3-642-31104-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics