Skip to main content

Thermophysical Properties of Gas Hydrate in Porous Media

  • Chapter
  • First Online:

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Gas hydrates are very important compounds due to their capacity to store large volumes of gases. From the viewpoint of maintenance process of gas hydrates in the sediments, thermophysical properties such as thermal conductivity, dissociation heat, and heat capacity play important roles. The thermal-time-domain reflection (TDR) method is a relatively new technique to acquire thermophysical properties of sediments with different hydrates saturation. In this chapter, a detailed introduction of thermal-TDR method is clarified, especially on hydrates research field. Experimental data such as thermal conductivity and volumetric heat capacity of different measurement conditions are listed. Besides, an experiment technique to investigate thermal-stimulating dissociation of gas hydrates is introduced, which can provide some fundamental data used for the hydrates resource exploitation program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Feng Yi, Liang Manbing. Error analysis on the stable flat measuring instrument for thermal conductivity. Guangzhou Chem Ind. 2006;34(1):56–8.

    Google Scholar 

  2. Zhang Jianzhi. Improvement of using steady cylinder method to automatically measure particle thermal conductivity. Nonferr Met. 2004;56(4):146–9.

    Google Scholar 

  3. Van der Held EFM, Van Druven FE. A method of measuring the thermal conductivity of liquid. Physics. 1949;15:866–9.

    Google Scholar 

  4. Gracemann P, et al. Measurement of thermal conductivities of liquid by an unsteady state method. New York: Academic; 1962.

    Google Scholar 

  5. Zhuang Yingchun, Xie Kanghe. Experimental study on thermal conductivity of mixed materials of sand and bentonite. Rock Soil Mech. 2005;26(2):261–4.

    Google Scholar 

  6. Li Lixin, Liu Qiuju, et al. The measurement of thermal conductivity of solids with transient heat wire method. Acta Metrol Sin. 2006;27(1):39–42.

    Google Scholar 

  7. Chen Kunjie, Gong Hongju. Experiment measurement of the thermal conductivity of paddy by a tin heat probe. Trans Chin Soc Agric Mach. 2005;36(1).

    Google Scholar 

  8. Yu Fan, Zhang Xinxin. Experimental investigation on the thermal conductivity measurement of materials with hot-strip method. Acta Metrol Sin. 2005;26(1):27–9.

    Article  Google Scholar 

  9. Ren Tusheng, Shao Ming’an, Ju Zhaoqiang. Measurement of soil physical properties with thermo-time domain reflectometry I. Theory. Acta Pedol Sin. 2004;41(2):225–9.

    Google Scholar 

  10. Tusheng Ren, Shao Ming’an, Ju Zhaoqiang. Measurement of soil physical properties with thermo-time domain reflectometry II. Application. Acta Pedol Sin. 2004;41(4):523–9.

    Google Scholar 

  11. Xu WY, Ruppel C. Predicting the occurrence, distribution and evolution of methane gas hydrate in porous marine sediments. J Geophys Res. 1999;104:5081–96.

    Article  Google Scholar 

  12. Huang DZ, Fan SS. Measuring and modeling thermal conductivity of gas hydrate bearing sand. J Geophys Res. 2005;110:B01311.

    Article  Google Scholar 

  13. Shi Dou, Sun Chengquan, Zhu Yuenian. Progress of overseas research on natural gas hydrate. Lanzhou: Lanzhou University Press; 1992.

    Google Scholar 

  14. Stoll RD, Bryan GM. Physical properties of the sediments containing gas hydrates. J Geophys Res. 1979;84(B4):1629–34.

    Article  Google Scholar 

  15. Huang Duzi. Thermal conductivity of gas hydrate. Chemistry. 2004;10:737–42.

    Article  Google Scholar 

  16. Huang Duzi. Measurements of gas hydrate composition and its thermal conductivity. Chin J Geophys. 2005;48(5):1125.1131.

    Google Scholar 

  17. Peng Hao. The determination of thermal conductivity of tetrahydrofuran hydrate at atmospheric pressure by transient plane source method. Chemistry. 2005;12:923–7.

    Google Scholar 

  18. Waite WF, Martin BJ. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand. Geophys Res Lett. 2002;29:2229.

    Article  Google Scholar 

  19. Diao Shaobo, Ye YuguangYe, Yue Yingjie, et al. Measurement of thermal-physical parameters of gas hydrate in porous media. Rock Miner Anal. 2008;27(3):165.168.

    Google Scholar 

  20. Karaaslan U, Parlaktuna M. On the dissociation of natural gas hydrates from surfactant solutions. Energy Fuel. 2001;15(1):241–6.

    Article  Google Scholar 

  21. Handa YP. Composition enthalpy of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, propane, and enthalpy of dissociation of isobutene hydrate, as determined by heat-flow calorimeter. J Chem Thermodyn. 1986;18:915.921.

    Google Scholar 

  22. Rueff RM, Solan ED, Yesavage VF. Heat capacity and heat of dissociation of methane hydrates. AIChJ. 1988;34(9):1468–76.

    Article  Google Scholar 

  23. Lievois JS, Perkins R, Martin RJ, et al. Development of an automated, high pressure heat flux calorimeter and its application to measure the heat of dissociation and hydrate number of methane hydrate. Fluid Phase Equilib. 1990;59:73–97.

    Article  Google Scholar 

  24. Anderson GK. Enthalpy of dissociation and hydration number of carbon dioxide hydrate from the Clapeyron equation. J Chem Thermodyn. 2003;35:1171–83.

    Article  Google Scholar 

  25. Sun Zhigao, Fan Shuanshi, Guo Kaihua, Wang Ruzhu. Determination of dissociation heat of natural gas hydrates. J Instrum Anal. 2002;21(3):7–9.

    Google Scholar 

  26. Reuff RM. The heat capacity and heat of dissociation of methane hydrates: a new approach, PhD thesis. Colorado: Colorado School of Mines; 1985.

    Google Scholar 

  27. Waite WF Pinkston J, Kirby SH. Preliminary laboratory thermal conductivity measurements in pure methane hydrate and methane hydrate-sediment mixtures. In: Proceedings of the Fourth International Conference on Gas Hydrate, Yokohama, Japan; 2002. p. 728−33.

    Google Scholar 

  28. Sassen R, Sweet ST, Milkov AV. Stability of thermogenic gas hydrate in the Gulf of Mexico: constraints on models of climate change, in natural gas hydrates: occurrence, distribution, and detection. Geophys Monogr. 2001;124:131–43.

    Article  Google Scholar 

  29. Paull CK, Ussler W. History and significance of gas sampling during DSDP and ODP drilling associated with gas hydrates, in natural gas hydrates: occurrence, distribution, and detection. Geophys Monogr. 2001;124:53–65.

    Article  Google Scholar 

  30. Wu Nengyou, Zhang Haiqi, Yang Shengxiong. Preliminary discussion on natural gas hydrate reservoir system of Shenhu area, north slope of South China Sea. Nat Gas Ind. 2011;27(9):1–7.

    Google Scholar 

  31. Hatizikiriakos SG, Englezos P. The relationship between global warming and methane gas hydrates in the earth. Chem Eng Sci. 1993;48(23):3963–9.

    Article  Google Scholar 

  32. Hatizikiriakos SG, Englezos P. Permafrost melting and stability of offshore methane hydrates subject to global warming. Int J Offshore Polar Eng. 1994;4(2):162–6.

    Google Scholar 

  33. Tang Guangliang, Feng Ziping, Shen Zhiyuan, Du Yan. Thermodynamic evaluation of natural gas hydrate production by thermal stimulation. J Eng Thermophys. 2007;28(1):5.8.

    Google Scholar 

  34. Hou Liqun, Wu Yingxiang, Xu Jingyu, Sun Junshu. A study on the seepage model for the exploitation of natural gas hydrate by thermal excitation. J Xi’An Shiyou Univ (Natural Science Edition). 2008;23(2):44–7.

    Google Scholar 

  35. Hao Yongmao, Chen Yueming, Li Shuxia. Study on production of natural gas hydrate by thermal stimulation. J China Univ Pet (Edition of Natural Science). 2007;31(4):60–3.

    Google Scholar 

  36. Chen Qiang, Ye Yuguang, Liu Changling, et al. Experimental research of methane hydrate phase transformation in porous media. Geoscience. 2010;24(5):972–8.

    Google Scholar 

  37. Wright JF, Nixon FM, Dallimore SR, et al. A method for direct measurement of gas hydrate amounts based on the Bulk dielectric properties of laboratory test media. In: Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan, May 19−23; 2002. p. 745–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuguang Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, Q., Diao, S., Ye, Y. (2013). Thermophysical Properties of Gas Hydrate in Porous Media. In: Ye, Y., Liu, C. (eds) Natural Gas Hydrates. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31101-7_5

Download citation

Publish with us

Policies and ethics