Skip to main content

Exponential Inertia Weight for Particle Swarm Optimization

  • Conference paper
Book cover Advances in Swarm Intelligence (ICSI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7331))

Included in the following conference series:

Abstract

The exponential inertia weight is proposed in this work aiming to improve the search quality of Particle Swarm Optimization (PSO) algorithm. This idea is based on the adaptive crossover rate used in Differential Evolution (DE) algorithm. The same formula is adopted and applied to inertia weight, w. We further investigate the characteristics of the adaptive w graphically and careful analysis showed that there exists two important parameters in the equation for adaptive w; one acting as the local attractor and the other as the global attractor. The 23 benchmark problems are adopted as test bed in this study; consisting of both high and low dimensional problems. Simulation results showed that the proposed method achieved significant improvement compared to the linearly decreasing method technique that is used widely in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shi, Y., Eberhart, R.: A Modified Particle Swarm Optimizer. In: IEEE World Congress on Computational Intelligence Evolutionary Computation Proceedings, 1998, pp. 69–73 (1998)

    Google Scholar 

  2. Hussain, Z., Noor, M.H.M., Ahmad, K.A., et al.: Evaluation of Spreading Factor Inertial Weight PSO for FLC of FES-Assisted Paraplegic Indoor Rowing Exercise. In: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA), pp. 430–434 (2011)

    Google Scholar 

  3. Bansal, J.C., Singh, P.K., Saraswat, M., et al.: Inertia Weight Strategies in Particle Swarm Optimization. In: 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 633–640 (2011)

    Google Scholar 

  4. Han, W., Yang, P., Ren, H., et al.: Comparison Study of several Kinds of Inertia Weights for PSO. In: 2010 IEEE International Conference on Progress in Informatics and Computing (PIC), vol. 1, pp. 280–284 (2010)

    Google Scholar 

  5. Mekhamer, S.F., Moustafa, Y.G., EI-Sherif, N., et al.: A Modified Particle Swarm Optimizer Applied to the Solution of the Economic Dispatch Problem. In: 2004 International Conference on Electrical, Electronic and Computer Engineering, ICEEC 2004, pp. 725–731 (2004)

    Google Scholar 

  6. Zhu, Z., Zhou, J., Ji, Z., et al.: DNA Sequence Compression using Adaptive Particle Swarm Optimization-Based Memetic Algorithm. IEEE Transactions on Evolutionary Computation 15, 643–658 (2011)

    Article  Google Scholar 

  7. Seo, J.-H., Im, C.-H., Heo, C.G., et al.: Multimodal Function Optimization Based on Particle Swarm Optimization. IEEE Transactions on Magnetics 42, 1095–1098 (2006)

    Article  Google Scholar 

  8. Xin, J., Chen, G., Hai, Y.: A Particle Swarm Optimizer with Multi-Stage Linearly-Decreasing Inertia Weight. In: International Joint Conference on Computational Sciences and Optimization, CSO 2009, vol. 1, pp. 505–508 (2009)

    Google Scholar 

  9. Zheng, Y.-L., Ma, L.-H., Zhang, L.-Y., et al.: Empirical Study of Particle Swarm Optimizer with an Increasing Inertia Weight. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 1, pp. 221–226 (2003)

    Google Scholar 

  10. Miranda, V., de Magalhaes Carvalho, L., da Rosa, M.A., et al.: Improving Power System Reliability Calculation Efficiency with EPSO Variants. IEEE Transactions on Power Systems 24, 1772–1779 (2009)

    Article  Google Scholar 

  11. Feng, Y., Teng, G.-F., Wang, A.-X., et al.: Chaotic Inertia Weight in Particle Swarm Optimization. In: Second International Conference on Innovative Computing, Information and Control, ICICIC 2007, p. 475 (2007)

    Google Scholar 

  12. Feng, Y., Teng, G.-F., Wang, A.-X.: Comparing with Chaotic Inertia Weights in Particle Swarm Optimization. In: 2007 International Conference on Machine Learning and Cybernetics, vol. 1, pp. 329–333 (2007)

    Google Scholar 

  13. Li, H.-R., Gao, Y.-L.: Particle Swarm Optimization Algorithm with Exponent Decreasing Inertia Weight and Stochastic Mutation. In: Second International Conference on Information and Computing Science, ICIC 2009, vol. 1, pp. 66–69 (2009)

    Google Scholar 

  14. Mahor, A., Prasad, V., Rangnekar, S.: Scheduling of Cascaded Hydro Power System: A New Self Adaptive Inertia Weight Particle Swarm Optimization Approach. In: International Conference on Advances in Recent Technologies in Communication and Computing, ARTCom 2009, pp. 565–570 (2009)

    Google Scholar 

  15. Zhan, Z.-H., Zhang, J., Li, Y., et al.: Adaptive Particle Swarm Optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39, 1362–1381 (2009)

    Article  Google Scholar 

  16. Dong, C., Wang, G., Chen, Z., et al.: A Method of Self-Adaptive Inertia Weight for PSO. In: 2008 International Conference on Computer Science and Software Engineering, vol. 1, pp. 1195–1198 (2008)

    Google Scholar 

  17. Ao, Y., Chi, H.: An Adaptive Differential Evolution to Solve Constrained Optimization Problems in Engineering Design. Scientific Research 2, 65–77 (2010)

    Google Scholar 

  18. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming made Faster. IEEE Transactions on Evolutionary Computation 3, 82–102 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ting, T.O., Shi, Y., Cheng, S., Lee, S. (2012). Exponential Inertia Weight for Particle Swarm Optimization. In: Tan, Y., Shi, Y., Ji, Z. (eds) Advances in Swarm Intelligence. ICSI 2012. Lecture Notes in Computer Science, vol 7331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30976-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30976-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30975-5

  • Online ISBN: 978-3-642-30976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics