Skip to main content

Mathematical Modeling of Systemic Risk

  • Chapter
  • First Online:

Part of the book series: Mathematics in Industry ((MATHINDUSTRY,volume 18))

Abstract

Since the onset of the financial crisis in 2007, more than 370 of the almost 8,000 US banks insured by the Federal Deposit Insurance Corporation have failed. By comparison, between 2000 and 2004 there were around 30 failures and no failures occurred between 2005 and the beginning of 2007.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Adrian and H. S. Shin. Financial intermediary leverage and value-at-risk. Federal Reserve Bank of New York Staff Reports, (338), 2008.

    Google Scholar 

  2. T. Adrian and H. S. Shin. The changing nature of financial intermediation and the financial crisis of 2007–2009. Annual Review of Economics, 2(1):603–618, 2010.

    Article  Google Scholar 

  3. F. Allen and D. Gale. Financial contagion. Journal of Political Economy, 108(1):1–33, 2000.

    Article  Google Scholar 

  4. H. Amini, R. Cont, and A. Minca. Resilience to Contagion in Financial Networks. SSRN eLibrary, 2010.

    Google Scholar 

  5. H. Amini, R. Cont, and A. Minca. Stress testing the resilience of financial networks. To appear in the International Journal of Theoretical and Applied Finance, 2011.

    Google Scholar 

  6. S. Battiston, D. D. Gatti, M. Gallegati, B. Greenwald, and J. E. Stiglitz. Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. Preprint available at http://www.nber.org/papers/w15611, 2009.

  7. E. A. Bender and E. R. Canfield. The asymptotic number of labeled graphs with given degree sequences.Journal of Combinatorial Theory, Series A, 24:296–307, 1978.

    Google Scholar 

  8. B. Bollobás. The asymptotic number of unlabelled regular graphs. J. London Math. Soc. (2), 26(2):201–206, 1982.

    Google Scholar 

  9. B. Bollobás and O. M. Riordan. Mathematical results on scale-free random graphs. InHandbook of graphs and networks, pages 1–34. Wiley-VCH, Weinheim, 2003.

    Google Scholar 

  10. M. Boss, H. Elsinger, M. Summer, and S. Thurner. The network topology of the interbank market. Quantitative Finance, (4):677–684, 2004.

    Google Scholar 

  11. M. K. Brunnermeier. Deciphering the liquidity and credit crunch 2007–2008.Journal of Economic Perspectives, 23(1):77–100, 2009.

    Google Scholar 

  12. J. A. Chan-Lau, M. Espinosa, K. Giesecke, and J. A. Sole. Assessing the systemic implications of financial linkages. In Global Financial Stability Report. International Monetary Fund, 2009.

    Google Scholar 

  13. R. Cifuentes, G. Ferrucci, and H. Shin. Liquidity risk and contagion.Journal of the European Economic Association, 3:556–566, 2005.

    Google Scholar 

  14. R. Cont and A. Minca. Credit default swaps and systemic risk. Working Paper, 2011.

    Google Scholar 

  15. R. Cont and A. Minca. Recovering portfolio default intensities implied by CDO quotes.Mathematical Finance, 2011.

    Google Scholar 

  16. R. Cont, A. Moussa, and E. B. Santos. Network Structure and Systemic Risk in Banking Systems. Preprint available at http://papers.ssrn.com/sol3/id=1733528, 2010.

  17. R. Cont and L. Wagalath. Running for the exit: distressed selling and endogenous correlation in financial markets.Mathematical Finance, 2011.

    Google Scholar 

  18. C. Cooper and A. M. Frieze. The size of the largest strongly connected component of a random digraph with a given degree sequence.Combinatorics, Probability & Computing, 13(3):319–337, 2004.

    Google Scholar 

  19. D. W. Diamond and R. G. Rajan. Fear of Fire Sales and the Credit Freeze. SSRN eLibrary, 2009.

    Google Scholar 

  20. X. Ding, K. Giesecke, and P. I. Tomecek. Time-changed birth processes and multiname credit derivatives.Oper. Res., 57(4):990–1005, 2009.

    Google Scholar 

  21. D. Duffie. The failure mechanics of dealer banks.Journal of Economic Perspectives, 24(1):51–72, 2010.

    Google Scholar 

  22. L. Eisenberg and T. H. Noe. Systemic Risk in Financial Systems. Management Science, 47(2):236–249, 2001.

    Article  MATH  Google Scholar 

  23. P. Erdős and A. Rényi. On random graphs. I.Publ. Math. Debrecen, 6:290–297, 1959.

    Google Scholar 

  24. P. Erdős and A. Rényi. On the evolution of random graphs.Publ. Math. Inst. Hung. Acad. Sci, 5:17–61, 1960.

    Google Scholar 

  25. E. Errais, K. Giesecke, and L. R. Goldberg. Affine point processes and portfolio credit risk. SIAM J. Financial Math., 1:642–665, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Gai and S. Kapadia. Contagion in Financial Networks.Proceedings of the Royal Society A, 466(2120):2401–2423, 2010.

    Google Scholar 

  27. P. Gai and S. Kapadia. Liquidity hoarding, network externalities, and interbank market collapse.Mimeo, Bank of England, 2010.

    Google Scholar 

  28. K. Giesecke. Portfolio credit risk: top-down vs bottom-u. In Cont, R. (ed.) : Frontiers in quantitative finance: credit risk and volatility modeling. Wiley, 2008.

    Google Scholar 

  29. J. Gleeson, T. R. Hurd, S. Melnik, and A. Hackett. Systemic risk in banking networks without monte carlo simulation. In E. Kranakis, editor,Advances in Network Analysis and its Applications, Mathematics in Industry. Springer Verlag, Berlin Heidelberg New York, 2011.

    Google Scholar 

  30. A. G. Haldane. Rethinking the financial networks. Speech delivered at Financial Student Association in Amsterdam, http://www.bankofengland.co.uk/publications/speeches/2009/speech386.pdf, 2009.

  31. A. G. Haldane and R. M. May. Systemic risk in banking ecosystems.Nature, 469:351–355, 2011.

    Google Scholar 

  32. M. Hellwig. Systemic aspects of risk management in banking and finance. Swiss Journal of Economics and Statistics, 131:723–737, 1995.

    Google Scholar 

  33. S. Janson, T. Łuczak, and A. Rucinski.Random graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

    Google Scholar 

  34. R. Jarrow and P. Protter. Structural versus reduced form models: a new information based perspective.Journal of Investment Management, 2(2):34–43, 2004.

    Google Scholar 

  35. N. Kiyotaki and J. Moore. Credit chains. Mimeo, Walras-Bowley Lecture to the North American Meeting of the Econometric Society, Iowa City, IA, 1996.

    Google Scholar 

  36. M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence.Random Structures Algorithms, 6(2–3):161–179, 1995.

    Google Scholar 

  37. M. Molloy and B. Reed. The size of the giant component of a random graph with a given degree sequence.Combinatorics, Probability and Computing, 7:295–305, 1998.

    Google Scholar 

  38. S. Morris and H. S. Shin. Illiquidity component of credit risk. Working paper, 2009.

    Google Scholar 

  39. M. Newman, Albert-László Barabási, and D. J. Watts.The Structure and Dynamics of Networks. Princeton University Press, 2006.

    Google Scholar 

  40. M. E. J. Newman. Spread of epidemic disease on networks. Phys. Rev. E, 66(1):016128, Jul 2002.

    Google Scholar 

  41. M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64:026118, 2001.

    Article  Google Scholar 

  42. P. Schönbucher. Portfolio losses and the term structure of loss transition rates: a new methodology for the pricing of portfolio credit derivatives.Working paper, 2005.

    Google Scholar 

  43. K. Soramaki, M. L. Bech, J. Arnold, R. J. Glass, and W. E. Beyeler. The topology of interbank payment flows. Physica A: Statistical Mechanics and its Applications, 379(1):317–333, 2007.

    Google Scholar 

  44. C. Upper. Simulation methods to assess the danger of contagion in interbank markets. Journal of Financial Stability, 7:111–125, 2011.

    Article  Google Scholar 

  45. D. J. Watts. A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences of the USA, 99(9):5766–5771, 2002.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Rama Cont and Damir Filipović for helpful comments and discussions that improved the presentation of this chapter. Andreea Minca would like to thank the Natixis Foundation for Quantitative Research who supported this work. Hamed Amini gratefully acknowledges financial support from the Austrian Science Fund (FWF) though project P21709.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreea Minca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amini, H., Minca, A. (2012). Mathematical Modeling of Systemic Risk. In: Kranakis, E. (eds) Advances in Network Analysis and its Applications. Mathematics in Industry, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30904-5_1

Download citation

Publish with us

Policies and ethics