Skip to main content

Subsymbolic Computation Theory for the Human Intuitive Processor

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Abstract

The classic theory of computation initiated by Turing and his contemporaries provides a theory of effective procedures—algorithms that can be executed by the human mind, deploying cognitive processes constituting the conscious rule interpreter. The cognitive processes constituting the human intuitive processor potentially call for a different theory of computation. Assuming that important functions computed by the intuitive processor can be described abstractly as symbolic recursive functions and symbolic grammars, we ask which symbolic functions can be computed by the human intuitive processor, and how those functions are best specified—given that these functions must be computed using neural computation. Characterizing the automata of neural computation, we begin the construction of a class of recursive symbolic functions computable by these automata, and the construction of a class of neural networks that embody the grammars defining formal languages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hofstadter, D.R.: Waking up from the Boolean dream, or, subcognition as computation. In: Hofstadter, D.R. (ed.) Metamagical Themas: Questing for the Essence of Mind and Pattern, pp. 631–665. Bantam Books (1986)

    Google Scholar 

  2. Kimoto, M., Takahashi, M.: On Computable Tree Functions. In: He, J., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 273–289. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. McClelland, J., Botvinick, M., Noelle, D., Plaut, D., Rogers, T., Seidenberg, M., Smith, L.: Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences 14(8), 348–356 (2010)

    Article  Google Scholar 

  4. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology 5(4), 115–133 (1943)

    MathSciNet  MATH  Google Scholar 

  5. Newell, A.: Physical symbol systems. Cognitive Science 4(2), 135–183 (1980)

    Article  Google Scholar 

  6. Prince, A., Smolensky, P.: Optimality Theory: Constraint interaction in generative grammar. Blackwell (1993/2004)

    Google Scholar 

  7. Prince, A., Smolensky, P.: Optimality: From neural networks to universal grammar. Science 275(5306), 1604–1610 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rumelhart, D., McClelland, J., The PDP Research Group: Parallel distributed processing: Explorations in the microstructure of cognition. Foundations, vol. 1. MIT Press, Cambridge (1986)

    Google Scholar 

  9. Rutgers Optimality Archive, http://roa.rutgers.edu

  10. Smolensky, P.: On the proper treatment of connectionism. Behavioral and Brain Sciences 11(01), 1–23 (1988)

    Article  Google Scholar 

  11. Smolensky, P.: Cognition: Discrete or continuous computation? In: Cooper, S., van Leeuwen, J. (eds.) Alan Turing — His Work and Impact. Elsevier (2012)

    Google Scholar 

  12. Smolensky, P.: Symbolic functions from neural computation. Philosophical Transactions of the Royal Society – A: Mathematical, Physical and Engineering Sciences (in press, 2012)

    Google Scholar 

  13. Smolensky, P., Goldrick, M., Mathis, D.: Optimization and quantization in gradient symbol systems: A framework for integrating the continuous and the discrete in cognition. Cognitive Science (in press, 2012)

    Google Scholar 

  14. Smolensky, P., Legendre, G.: The harmonic mind: From neural computation to Optimality-Theoretic grammar, vol. 1: Cognitive architecture, vol. 2: Linguistic and philosophical implications. MIT Press, Cambridge (2006)

    Google Scholar 

  15. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42, 230–265 (1936)

    Article  Google Scholar 

  16. Turing, A.M.: Intelligent machinery: A report by Turing, A.M. National Physical Laboratory (1948)

    Google Scholar 

  17. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smolensky, P. (2012). Subsymbolic Computation Theory for the Human Intuitive Processor. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics