Skip to main content

Computational Modeling of Angiogenesis: Towards a Multi-Scale Understanding of Cell–Cell and Cell–Matrix Interactions

  • Chapter
  • First Online:
Mechanical and Chemical Signaling in Angiogenesis

Abstract

Combined with in vitro and in vivo experiments, mathematical and computational modeling are key to unraveling how mechanical and chemical signaling by endothelial cells coordinates their organization into capillary-like tubes. While in vitro and in vivo experiments can unveil the effects of, for example, environmental changes or gene knockouts, computational models provide a way to formalize and understand the mechanisms underlying these observations. This chapter reviews recent computational approaches to model angiogenesis, and discusses the insights they provide into the mechanisms of angiogenesis. We introduce a new cell-based computational model of an in vitro assay of angiogenic sprouting from endothelial monolayers in fibrin matrices. Endothelial cells are modeled by the Cellular Potts Model, combined with continuum descriptions to model haptotaxis and proteolysis of the extracellular matrix. The computational model demonstrates how a variety of cellular structural properties and behaviors determine the dynamics of tube formation. We aim to extend this model to a multi-scale model in the sense that cells, extracellular matrix and cell-regulation are described at different levels of detail and feedback on each other. Finally we discuss how computational modeling, combined with in vitro and in vivo modeling steers experiments, and how it generates new experimental hypotheses and insights on the mechanics of angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koolwijk, P., van Erck, M., de Vree, W., Vermeer, M., Weich, H., Hanemaaijer, R., van Hinsbergh, V.: Cooperative effect of TNFalpha bFGF and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J. Cell Biol. 132(6), 1177–1188 (1996)

    Article  Google Scholar 

  2. Anderson, A., Chaplain, M.: A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl. Math. Lett. 11(3), 109–114 (1998)

    Article  MATH  Google Scholar 

  3. Manoussaki, D., Lubkin, S., Vemon, R., Murray, J.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheor. 44(3), 271–282 (1996)

    Article  Google Scholar 

  4. Namy, P., Ohayon, J., Tracqui, P.: Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 227, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  5. Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)

    Article  Google Scholar 

  6. Anderson, A., Chaplain, M.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5), 857–899 (1998). doi:10.1006/bulm.1998.0042

    Article  MATH  Google Scholar 

  7. Szabó, A., Perryn, E., Czirok, A.: Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett. 98(3), 038102 (2007)

    Article  Google Scholar 

  8. Jackson, T., Zheng, X.: A Cell-based Model of Endothelial Cell Migration Proliferation and Maturation During Corneal Angiogenesis. Bull. Math. Biol. (2010). doi:10.1007/s11538-009-9471-1

  9. Szabó, A., Mehes, E., Kosa, E., Czirók, A.: Multicellular sprouting in vitro. Biophys. J. 95(6), 2702–2710 (2008). doi:10.1529/biophysj.108.129668

    Article  Google Scholar 

  10. Szabó, A., Czirók, A.: The role of cell-cell adhesion in the formation of multicellular sprouts. Math. Model. Nat. Phenom. 5 (1) (2010). doi:10.1051/mmnp/20105105

  11. Bauer, A., Jackson, T., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92(9), 3105–3121 (2007)

    Article  Google Scholar 

  12. Bentley, K., Gerhardt, H., Bates, P.: Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J. Theor. Biol. 250(1), 25–36 (2008). doi:10.1016/j.jtbi.2007.09.015

    Article  Google Scholar 

  13. Merks, R., Brodsky, S., Goligorksy, M., Newman, S., Glazier, J.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289, 44–54 (2006)

    Article  Google Scholar 

  14. Merks, R., Perryn, E., Shirinifard, A., Glazier, J.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4(9), e1000163 (2008)

    Article  MathSciNet  Google Scholar 

  15. Vernon, R., Angello, J., Iruela-Arispe, M., Lane, T., Sage, E.: Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66(5), 536 (1992)

    Google Scholar 

  16. Vailhé, B., Ronot, X., Tracqui, P., Usson, Y., Tranqui, L.: in vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin localization. in vitro Cell. Dev. An. 33(10), 763–73 (1997). http://www.ncbi.nlm.nih.gov/pubmed/9466681

    Google Scholar 

  17. Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation morphogenesis and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90(11), 118101 (2003)

    Article  Google Scholar 

  18. Tosin, A., Ambrosi, D., Preziosi, L.: Mechanics and chemotaxis in the morphogenesis of vascular networks. Bull. Math. Biol. 68(7), 1819–1836 (2006). doi:10.1007/s11538-006-9071-2

    Article  MathSciNet  Google Scholar 

  19. Ambrosi, D., Gamba, A., Serini, G.: Cell directional persistence and chemotaxis in vascular morphogenesis. Bull. Math. Biol. 66(6), 1851–1873 (2004). doi:10.1016/j.bulm.2004.04.004

    Article  MathSciNet  Google Scholar 

  20. Merks, R., Koolwijk, P.: Modeling morphogenesis in silico and in vitro: towards quantitative predictive cell-based modeling. Math. Model. Nat. Phenom. 4(4), 149–171 (2009). doi:10.1051/mmnp/20094406

    Article  MATH  MathSciNet  Google Scholar 

  21. Merks, R., Glazier, J.: A cell-centered approach to developmental biology. Phys. A 352(1), 113–130 (2005)

    Article  Google Scholar 

  22. Merks, R., Newman, S., Glazier, J.: Cell-oriented modeling of in vitro capillary development. In: Sloot, P., Chopard, B., Hoekstra, A. (eds.) Cellular Automata Lecture Notes in Computer Science, pp. 425–434. Springer Berlin, Heidelberg (2004)

    Google Scholar 

  23. Merks, R., Glazier, J.: Dynamic mechanisms of blood vessel growth. Nonlinearity 19(1), C1–C10 (2006)

    Google Scholar 

  24. Dejana, E.: Endothelial cell-cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5, 261–270 (2004)

    Article  Google Scholar 

  25. Hillen, F., Griffioen, A.: Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 26(3–4), 489–502 (2007). doi:10.1007/s10555-007-9094-7

    Article  Google Scholar 

  26. Sholley, M., Ferguson, G., Seibel, H., Montour, J., Wilson, J.: Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51(6), 624 (1984)

    Google Scholar 

  27. Bauer, A., Jackson, T., Jiang, Y.: Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput. Biol. 5(7), e1000, 445 (2009). doi:10.1371/journal.pcbi.1000445

  28. Hellström, M., Phng, L., Hofmann, J., Wallgard, E., Coultas, L., Lindblom, P., Alva, J., Nilsson, A., Karlsson, L., Gaiano, N., Yoon, K., Rossant, J., Iruela-Arispe, M., Kalé n, M., Gerhardt, H., Betsholtz, C.: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129), 776–80 (2007). doi:10.1038/nature05571

    Article  Google Scholar 

  29. Bentley, K., Mariggi, G., Gerhardt, H., Bates, P.: Tipping the balance: robustness of tip cell selection migration and fusion in angiogenesis. PLoS Comput. Biol. 5(10), e1000549 (2009). doi:10.1371/journal.pcbi.1000549

  30. Jakobsson, L., Franco, C., Bentley, K., Collins, R., Ponsioen, B., Aspalter, I., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., Schulte-Merker, S., Gerhardt, H.: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10), 943–953 (2010). doi:10.1038/ncb2103

    Article  Google Scholar 

  31. Fisher, A., Chien, S., Barakat, A.: Endothelial cellular response to altered shear stress . Am. J. Physiol. Lung. C. 281(3), L529–L533 (2001). http://ajplung.physiology.org/content/281/3/L529.short

  32. McDougall, S., Anderson, A., Chaplain, M.: Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3), 564–589 (2006). doi:10.1016/j.jtbi.2005.12.022

    Article  MathSciNet  Google Scholar 

  33. Qutub, A., Mac Gabhann, F., Karagiannis, E., Vempati, P., Popel, A.: Multiscale models of angiogenesis. IEEE Eng. Med. Biol. 28(2), 14–31 (2009)

    Article  Google Scholar 

  34. Qutub, A., Popel, A.: Elongation proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3(1), 13 (2009)

    Article  Google Scholar 

  35. Qutub, A., Liu, G., Vempati, P., Popel, A.: Integration of angiogenesis modules at multiple scales: from molecular to tissue. In: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, p. 316. NIH Public Access (2009)

    Google Scholar 

  36. Liu, G., Qutub, A., Vempati, P., Mac Gabhann, F., Popel, A.: Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor. Biol. Med. Modell. 8(1), 6 (2011). doi:10.1186/1742-4682-8-6

    Article  Google Scholar 

  37. Shirinifard, A., Gens, J., Zaitlen, B., Popawski, N., Swat, M., Glazier, J.: 3D multi-cell simulation of tumor growth and angiogenesis. PLoS one 4 (10) (2009). doi:10.1371/journal.pone.0007190

  38. van Hinsbergh, V., Koolwijk, P.: Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc. Res. 78(2), 203 (2008)

    Article  Google Scholar 

  39. Glazier, J., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 47(3), 2128–2154 (1993)

    Article  Google Scholar 

  40. Graner, F., Glazier, J.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)

    Article  Google Scholar 

  41. Swat, M., Hester, S., Heiland, R., Zaitlen, B., Glazier, J., Shirinifard, A.: CompuCell3D manual and tutorial version 3.6.0 (2011)

    Google Scholar 

  42. Savill, N.: Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol. 184((3), 229–235 (1996). doi:10.1006/jtbi.1996.0237

    Google Scholar 

  43. Collen, A., Koolwijk, P., Kroon, M., van Hinsbergh, V.: Influence of fibrin structure on the formation and maintenance of capillary-like tubules by human microvascular endothelial cells. Angiogenesis 2(2), 153–166 (1998)

    Article  Google Scholar 

  44. Weijers, E., van Wijhe, M., Joosten, L., Horrevoets, A., de Maat, M., van Hinsbergh, V., Koolwijk, P.: Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells. J. Thromb. Haemostasis 8(12), 2800–2809 (2010)

    Article  Google Scholar 

  45. Montesano, R., Pepper, M., Möhle-Steinlein, U., Risau, W., Wagner, E., Orci, L.: Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62(3), 435–445 (1990)

    Article  Google Scholar 

  46. Kroon, M., Koolwijk, P., van Goor, H., Weidle, U., Collen, A., VanDer Pluijm, G., van Hinsbergh, V.: Role and localization of urokinase receptor in the formation of new microvascular structures in fibrin matrices. Am. J. Pathol. 154(6), 1731 (1999)

    Article  Google Scholar 

  47. Kaijzel, E., Koolwijk, P., van Erck, M., van Hinsbergh, V., de Maat, M.: Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo. J. Thromb. Haemostasis 4(9), 1975–1981 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Indiana University and the Biocomplexity Institute for providing the CC3D modeling environment. This work was cofinanced by the Netherlands Consortium for Systems Biology (NCSB) which is part of the Netherlands Genomics Initiative/Netherlands organization for Scientific Research and by the Netherlands Institute of Regenerative Medicine. The investigations were (in part) supported by the Division for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roeland M. H. Merks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boas, S.E.M., Palm, M.M., Koolwijk, P., Merks, R.M.H. (2013). Computational Modeling of Angiogenesis: Towards a Multi-Scale Understanding of Cell–Cell and Cell–Matrix Interactions. In: Reinhart-King, C. (eds) Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30856-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30856-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30855-0

  • Online ISBN: 978-3-642-30856-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics