Skip to main content

Matrix Mechanics and Cell Contractility in Angiogenesis

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 12))

Abstract

Angiogenesis is a complex process that relies on the interplay of chemical and mechanical signaling events that ultimately result in the formation of new blood vessels. While much work has uncovered the chemical signaling events that mediate angiogenesis, the role of the mechanical environment is less understood. In this chapter, we will discuss how the mechanical microenvironment regulates angiogenesis by examining how matrix stiffness and cellular contractility mediate endothelial cell behaviors that are necessary for the progression of angiogenesis. Specifically, we will describe the roles of matrix stiffness and cell contractility as regulators of endothelial cell adhesion and shape, migration, growth, cell–cell interactions, and cell–matrix remodeling. Collectively, these findings implicate endogenous cellular forces and matrix stiffness as critical components of the angiogenic microenvironment, and suggest that both are important parameters for tissue engineering applications and a greater understanding of angiogenesis during disease progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kalluri, R.: Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3(6), 422–433 (2003)

    Article  Google Scholar 

  2. Califano, J.P., Reinhart-King, C.A.: Exogenous and endogenous force regulation of endothelial cell behavior. J. Biomech. 43(1), 79–86 (2010)

    Article  Google Scholar 

  3. Davies, P.F.: Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6(1), 16–26 (2009)

    Article  Google Scholar 

  4. Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3), 519–560 (1995)

    Google Scholar 

  5. Kakisis, J.D., Liapis, C.D., Sumpio, B.E.: Effects of cyclic strain on vascular cells. Endothelium 11(1), 17–28 (2004)

    Article  Google Scholar 

  6. Cummins, P.M., von Offenberg Sweeney, N., Killeen, M.T., Birney, Y.A., Redmond, E.M., Cahill, P.A.: Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am. J. Physiol. Heart Circulatory Physiol. 292(1), H28–H42 (2007)

    Article  Google Scholar 

  7. Vouyouka, A.G., Powell, R.J., Ricotta, J., Chen, H., Dudrick, D.J., Sawmiller, C.J., Dudrick, S.J., Sumpio, B.E.: Ambient pulsatile pressure modulates endothelial cell proliferation. J. Mol. Cell Cardiol. 30(3), 609–615 (1998)

    Article  Google Scholar 

  8. Rabodzey, A., Alcaide, P., Luscinskas, F.W., Ladoux, B.: Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys. J. 95(3), 1428–1438 (2008)

    Article  Google Scholar 

  9. Sheriff, D.: Point: the muscle pump raises muscle blood flow during locomotion. J. Appl. Physiol. 99(1), 371–382; discussion 374–385 (2005)

    Google Scholar 

  10. Mahabeleshwar, G.H., Feng, W., Reddy, K., Plow, E.F., Byzova, T.V.: Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ. Res. 101(6), 570–580 (2007)

    Article  Google Scholar 

  11. Califano, J.P., Reinhart-King, C.A.: A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 1(2–3), 122–132 (2008)

    Article  Google Scholar 

  12. Reinhart-King, C.A., Dembo, M., Hammer, D.A.: The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89(1), 676–689 (2005)

    Article  Google Scholar 

  13. Califano, J.P., Reinhart-King, C.A.: Substrate stiffness and cell area drive cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3(1), 68–75 (2010)

    Article  Google Scholar 

  14. Legate, K.R., Fassler, R.: Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. J. Cell Sci. 122(Pt 2), 187–198 (2009)

    Article  Google Scholar 

  15. Chen, C.S., Alonso, J.L., Ostuni, E., Whitesides, G.M., Ingber, D.E.: Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307(2), 355–361 (2003)

    Article  Google Scholar 

  16. Bhadriraju, K., Yang, M., Alom Ruiz, S., Pirone, D., Tan, J., Chen, C.S.: Activation of Rock by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Exp. Cell. Res. 313(16), 3616–3623 (2007)

    Google Scholar 

  17. Nelson, C.M., Pirone, D.M., Tan, J.L., Chen, C.S.: Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol. Biol. Cell 15(6), 2943–2953 (2004)

    Article  Google Scholar 

  18. Ko, K.S., Arora, P.D., McCulloch, C.A.: Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. J. Biol. Chem. 276(38), 35967–35977 (2001)

    Article  Google Scholar 

  19. Ganz, A., Lambert, M., Saez, A., Silberzan, P., Buguin, A., Mege, R.M., Ladoux, B.: Traction forces exerted through N-cadherin contacts. Biol. Cell 98(12), 721–730 (2006)

    Article  Google Scholar 

  20. Ladoux, B., Anon, E., Lambert, M., Rabodzey, A., Hersen, P., Buguin, A., Silberzan, P., Mege, R.M.: Strength dependence of cadherin-mediated adhesions. Biophys. J. 98(4), 534–542 (2010)

    Article  Google Scholar 

  21. Liu, Z., Tan, J.L., Cohen, D.M., Yang, M.T., Sniadecki, N.J., Ruiz, S.A., Nelson, C.M., Chen, C.S.: Mechanical tugging force regulates the size of cell–cell junctions. Proc. Natl. Acad. Sci. U S A 107(22), 9944–9949 (2009)

    Article  Google Scholar 

  22. Huynh, J., Nishimura, N., Rana, K., Peloquin, J.M., Califano, J.P., Montague, C.R., King, M.R., Schaffer, C.B., Reinhart-King, C.A.: Age-Related Intimal Stiffening Enhances Endothelial Permeability and Leukocyte Transmigration. Sci. Transl. Med. 3(112), 112ra–122ra (2011)

    Article  Google Scholar 

  23. Ogita, H., Takai, Y.: Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule. Int. Rev. Cytol. 265, 1–54 (2008)

    Article  Google Scholar 

  24. Beningo, K.A., Dembo, M., Kaverina, I., Small, J.V., Wang, Y.L.: Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153(4), 881–888 (2001)

    Article  Google Scholar 

  25. Mammoto, A., Huang, S., Ingber, D.E.: Filamin links cell shape and cytoskeletal structure to Rho regulation by controlling accumulation of p190RhoGAP in lipid rafts. J. Cell Sci. 120(Pt 3), 456–467 (2007)

    Article  Google Scholar 

  26. Mammoto, A., Connor, K.M., Mammoto, T., Yung, C.W., Huh, D., Aderman, C.M., Mostoslavsky, G., Smith, L.E., Ingber, D.E.: A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457(7233), 1103–1108 (2009)

    Article  Google Scholar 

  27. Huot, J., Houle, F., Rousseau, S., Deschesnes, R.G., Shah, G.M., Landry, J.: SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J. Cell Biol. 143(5), 1361–1373 (1998)

    Article  Google Scholar 

  28. van Nieuw Amerongen, G.P., Koolwijk, P., Versteilen, A., van Hinsbergh, V.W.: Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb. Vasc. Biol. 23(2), 211–217 (2003)

    Article  Google Scholar 

  29. Yang, M.T., Reich, D.H., Chen, C.S.: Measurement and analysis of traction force dynamics in response to vasoactive agonists. Integr. Biol. (Camb) 3(6), 663–674 (2011)

    Article  Google Scholar 

  30. Ezzell, R.M., Goldmann, W.H., Wang, N., Parashurama, N., Ingber, D.E.: Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp. Cell Res. 231(1), 14–26 (1997)

    Article  Google Scholar 

  31. Ingber, D.E.: Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl. Acad. Sci. U S A. 87(9), 3579–3583 (1990)

    Article  Google Scholar 

  32. Ingber, D.E., Prusty, D., Sun, Z., Betensky, H., Wang, N.: Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J. Biomech. 28(12), 1471–1484 (1995)

    Article  Google Scholar 

  33. Roca-Cusachs, P., Alcaraz, J., Sunyer, R., Samitier, J., Farre, R., Navajas, D.: Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94(12), 4984–4995 (2008)

    Article  Google Scholar 

  34. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E.: Geometric control of cell life and death. Science 276(5317), 1425–1428 (1997)

    Article  Google Scholar 

  35. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E.: Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14(3), 356–363 (1998)

    Article  Google Scholar 

  36. Dike, L.E., Chen, C.S., Mrksich, M., Tien, J., Whitesides, G.M., Ingber, D.E.: Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell. Dev. Biol. Anim. 35(8), 441–448 (1999)

    Article  Google Scholar 

  37. Huang, S., Chen, C.S., Ingber, D.E.: Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol. Biol. Cell 9(11), 3179–3193 (1998)

    Article  Google Scholar 

  38. Flusberg, D.A., Numaguchi, Y., Ingber, D.E.: Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol. Biol. Cell 12(10), 3087–3094 (2001)

    Article  Google Scholar 

  39. Huang, S., Ingber, D.E.: A discrete cell cycle checkpoint in late G(1) that is cytoskeleton-dependent and MAP kinase (Erk)-independent. Exp. Cell Res. 275(2), 255–264 (2002)

    Article  Google Scholar 

  40. Mammoto, A., Huang, S., Moore, K., Oh, P., Ingber, D.E.: Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J. Biol. Chem. 279(25), 26323–26330 (2004)

    Article  Google Scholar 

  41. Nelson, C.M., Chen, C.S.: VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J. Cell Sci. 116(Pt 17), 3571–3581 (2003)

    Article  Google Scholar 

  42. Gray, D.S., Liu, W.F., Shen, C.J., Bhadriraju, K., Nelson, C.M., Chen, C.S.: Engineering amount of cell–cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp. Cell Res. 314(15), 2846–2854 (2008)

    Article  Google Scholar 

  43. Nelson, C.M., Jean, R.P., Tan, J.L., Liu, W.F., Sniadecki, N.J., Spector, A.A., Chen, C.S.: Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. U S A. 102(33), 11594–11599 (2005)

    Article  Google Scholar 

  44. Byfield, F.J., Reen, R.K., Shentu, T.P., Levitan, I., Gooch, K.J.: Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J. Biomech. 42(8), 1114–1119 (2009)

    Article  Google Scholar 

  45. Maniotis, A.J., Chen, C.S., Ingber, D.E.: Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U S A. 94(3), 849–854 (1997)

    Article  Google Scholar 

  46. Dike, L.E., Ingber, D.E.: Integrin-dependent induction of early growth response genes in capillary endothelial cells. J. Cell Sci. 109(Pt 12), 2855–2863 (1996)

    Google Scholar 

  47. Chen, J., Fabry, B., Schiffrin, E.L., Wang, N.: Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am. J. Physiol. Cell Physiol. 280(6), C1475–C1484 (2001)

    Google Scholar 

  48. Pourati, J., Maniotis, A., Spiegel, D., Schaffer, J.L., Butler, J.P., Fredberg, J.J., Ingber, D.E., Stamenovic, D., Wang, N.: Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am. J. Physiol. 274(5 Pt 1), C1283–C1289 (1998)

    Google Scholar 

  49. Kumar, S., Maxwell, I.Z., Heisterkamp, A., Polte, T.R., Lele, T.P., Salanga, M., Mazur, E., Ingber, D.E.: Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90(10), 3762–3773 (2006)

    Article  Google Scholar 

  50. Lu, L., Oswald, S.J., Ngu, H., Yin, F.C.: Mechanical properties of actin stress fibers in living cells. Biophys. J. 95(12), 6060–6071 (2008)

    Article  Google Scholar 

  51. Wang, N., Ingber, D.E.: Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66(6), 2181–2189 (1994)

    Article  Google Scholar 

  52. Matthews, B.D., Overby, D.R., Mannix, R., Ingber, D.E.: Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119(Pt 3), 508–518 (2006)

    Article  Google Scholar 

  53. Panorchan, P., Lee, J.S., Kole, T.P., Tseng, Y., Wirtz, D.: Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix. Biophys. J. 91(9), 3499–3507 (2006)

    Article  Google Scholar 

  54. Stroka, K.M., Aranda-Espinoza, H.: Effects of morphology vs. cell–cell interactions on endothelial cell stiffness. Cell. Mol. Bioeng. 4(1), 9–27 (2011)

    Article  Google Scholar 

  55. Ghosh, K., Thodeti, C.K., Dudley, A.C., Mammoto, A., Klagsbrun, M., Ingber, D.E.: Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. PNAS 105(32), 11305–11310 (2008)

    Article  Google Scholar 

  56. Folkman, J., Haudenschild, C.: Angiogenesis in vitro. Nature 288(5791), 551–556 (1980)

    Article  Google Scholar 

  57. Chicurel, M.E., Chen, C.S., Ingber, D.E.: Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10(2), 232–239 (1998)

    Article  Google Scholar 

  58. Vernon, R.B., Lara, S.L., Drake, C.J., Iruela-Arispe, M.L., Angello, J.C., Little,C.D., Wight, T.N., Sage,E.H.: Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell. Dev. Biol. Anim. 31(2), 120–131 (1995)

    Google Scholar 

  59. Ingber, D.E., Folkman, J.: Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109(1), 317–330 (1989)

    Article  Google Scholar 

  60. Vailhe, B., Ronot, X., Tracqui, P., Usson, Y., Tranqui, L. In: vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin localization. In: Vitro Cell. Dev Biol. Anim. 33(10), 763–773 (1997)

    Google Scholar 

  61. Deroanne, C.F., Lapiere, C.M., Nusgens, B.V.: In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc. Res. 49(3), 647–658 (2001)

    Article  Google Scholar 

  62. Kuzuya, M., Satake, S., Ai, S., Asai, T., Kanda, S., Ramos, M.A., Miura, H., Ueda, M., Iguchi, A.: Inhibition of angiogenesis on glycated collagen lattices. Diabetologia 41(5), 491–499 (1998)

    Article  Google Scholar 

  63. Nehls, V., Herrmann, R.: The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc. Res. 51(3), 347–364 (1996)

    Article  Google Scholar 

  64. Sieminski, A.L., Hebbel, R.P., Gooch, K.J.: The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell Res. 297(2), 574–584 (2004)

    Article  Google Scholar 

  65. Guo, W.H., Frey, M.T., Burnham, N.A., Wang, Y.L.: Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90(6), 2213–2220 (2006)

    Article  Google Scholar 

  66. Ghajar, C.M., Blevins, K.S., Hughes, C.C., George, S.C., Putnam, A.J.: Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng. 12(10), 2875–2888 (2006)

    Article  Google Scholar 

  67. Shamloo, A., Heilshorn, S.C.: Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab. Chip. 10(22), 3061–3068 (2010)

    Article  Google Scholar 

  68. Parker, K.K., Brock, A.L., Brangwynne, C., Mannix, R.J., Wang, N., Ostuni, E., Geisse, N.A., Adams, J.C., Whitesides, G.M., Ingber, D.E.: Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16(10), 1195–1204 (2002)

    Article  Google Scholar 

  69. Fainaru, O., Almog, N., Yung, C.W., Nakai, K., Montoya-Zavala, M., Abdollahi, A., D’Amato, R., Ingber, D.E.: Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells. FASEB J 24(5), 1411–1418 (2010)

    Article  Google Scholar 

  70. Ghajar, C.M., Kachgal, S., Kniazeva, E., Mori, H., Costes, S.V., George, S.C., Putnam, A.J.: Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp. Cell Res. 316(5), 813–825 (2010)

    Article  Google Scholar 

  71. Kachgal, S., Putnam, A.J.: Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 14(1), 47–59 (2011)

    Article  Google Scholar 

  72. Grainger, S.J., Putnam, A.J.: Assessing the permeability of engineered capillary networks in a 3D culture. PLoS ONE 6(7), e22086 (2011)

    Article  Google Scholar 

  73. Chen, X., Aledia, A.S., Ghajar, C.M., Griffith, C.K., Putnam, A.J., Hughes, C.C., George, S.C.: Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A 15(6), 1363–1371 (2009)

    Article  Google Scholar 

  74. Kniazeva, E., Putnam, A.J.: Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. Cell Physiol. 297(1), C179–C187 (2009)

    Article  Google Scholar 

  75. Kniazeva, E., Kachgal, S., Putnam, A.J.: Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Eng. Part A 17(7–8), 905–914 (2011)

    Article  Google Scholar 

  76. Oliver, T., Dembo, M., Jacobson, K.: Separation of propulsive and adhesive traction stresses in locomoting keratocytes. J. Cell Biol. 145(3), 589–604 (1999)

    Article  Google Scholar 

  77. Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., Horwitz, A.F.: Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616), 537–540 (1997)

    Article  Google Scholar 

  78. Peyton, S.R., Putnam, A.J.: Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell Physiol. 204(1), 198–209 (2005)

    Article  Google Scholar 

  79. Jannat, R.A., Dembo, M., Hammer, D.A.: Neutrophil adhesion and chemotaxis depend on substrate mechanics. J. Phys.: Condens. Matter 22(19), 194117 (2010)

    Google Scholar 

  80. Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.L.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79(1), 144–152 (2000)

    Article  Google Scholar 

  81. Reinhart-King, C.A., Dembo, M., Hammer, D.A.: Cell–cell mechanical communication through compliant substrates. Biophys. J. 95(12), 6044–6051 (2008)

    Article  Google Scholar 

  82. Isenberg, B.C., Dimilla, P.A., Walker, M., Kim, S., Wong, J.Y.: Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys. J. 97(5), 1313–1322 (2009)

    Article  Google Scholar 

  83. Tse, J.R., Engler, A.J.: Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6(1), e15978 (2011)

    Article  Google Scholar 

  84. Gray, D.S., Tien, J., Chen, C.S.: Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J. Biomed. Mater. Res. A 66(3), 605–614 (2003)

    Article  Google Scholar 

  85. Davis, G.E., Senger, D.R.: Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97(11), 1093–1107 (2005)

    Article  Google Scholar 

  86. Saunders, R.L., Hammer, D.A.: Assembly of human umbilical vein endothelial cells on compliant hydrogels. Cell. Mol. Bioeng. 3(1), 60–67 (2010)

    Article  Google Scholar 

  87. de Rooij, J., Kerstens, A., Danuser, G., Schwartz, M.A., Waterman-Storer, C.M.: Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J. Cell Biol. 171(1), 153–164 (2005)

    Article  Google Scholar 

  88. du Roure, O., Saez, A., Buguin, A., Austin, R.H., Chavrier, P., Silberzan, P., Ladoux, B.: Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U S A 102(7), 2390–2395 (2005)

    Article  Google Scholar 

  89. Trepat, X., Wasserman, M.R., Angelini, T.E., Millet, E., Weitz, D.A., Butler, J.P., Fredberg, J.J.: Physical forces during collective cell migration. Nat. Phys. 5(6), 426–430 (2009)

    Article  Google Scholar 

  90. Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P., Ladoux, B.: Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl. Acad. Sci. U S A 104(20), 8281–8286 (2007)

    Article  Google Scholar 

  91. Krishnan, L., Hoying, J.B., Nguyen, H., Song, H., Weiss, J.A.: Interaction of angiogenic microvessels with the extracellular matrix. Am. J. Physiol. Heart. Circ. Physiol. 293(6), H3650–H3658 (2007)

    Article  Google Scholar 

  92. Reinhart-King, C.A., Dembo, M., Hammer, D.A.: Endothelial cell traction forces on RGD-derivatized polyacrylamide substrata. Langmuir 19(5), 1573–1579 (2003)

    Article  Google Scholar 

  93. Vernon, R.B., Angello, J.C., Iruela-Arispe, M.L., Lane, T.F., Sage, E.H.: Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66(5), 536–547 (1992)

    Google Scholar 

  94. Zhou, X., Rowe, R.G., Hiraoka, N., George, J.P., Wirtz, D., Mosher, D.F., Virtanen, I., Chernousov, M.A., Weiss, S.J.: Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev. 22(9), 1231–1243 (2008)

    Article  Google Scholar 

  95. Magnusson, M.K., Mosher, D.F.: Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler. Thromb. Vasc. Biol. 18(9), 1363–1370 (1998)

    Article  Google Scholar 

  96. Lemmon, C.A., Chen, C.S., Romer, L.H.: Cell traction forces direct fibronectin matrix assembly. Biophys. J. 96(2), 729–738 (2009)

    Article  Google Scholar 

  97. Dzamba, B.J., Jakab, K.R., Marsden, M., Schwartz, M.A., DeSimone, D.W.: Cadherin adhesion, tissue tension, and noncanonical wnt signaling regulate fibronectin matrix organization. Dev. Cell 16(3), 421–432 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia A. Reinhart-King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Califano, J.P., Reinhart-King, C.A. (2013). Matrix Mechanics and Cell Contractility in Angiogenesis. In: Reinhart-King, C. (eds) Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30856-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30856-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30855-0

  • Online ISBN: 978-3-642-30856-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics