Skip to main content

Plant-Mycorrhizae and Endophytic Fungi Interactions: Broad Spectrum of Allelopathy Studies

  • Chapter
  • First Online:

Abstract

Plants may compete with one another for resources and they could also release allelochemicals that inhibit or stimulate the development and survival of neighboring plants and microorganisms. Arbuscular mycorrhizal fungi (AMF) and fungal endophytes are part of the microbial community of almost every plant; the composition of a plant microbial community is thought to affect plant fitness and physiology as well as their interactions with other plants. Arbuscular mycorrhizal fungi and endophytes could affect the interactions between invasive and native plants or crops; this may be due to modifications in soil microbial communities mediated by allelochemicals produced by those fungi and plants. This chapter discusses the possible allelopathic interactions between maize and Rottboellia cochinchinensis, as well as the possible interactions with their associated AMF. Other group of microorganisms considered here are endophytic fungi. This type of fungi produces allelochemicals with a great chemical diversity and biological activities. Interactions between plants and their associated microbial communities are mediated by allelochemicals; direct or indirect effects of these compounds on plants and microorganisms are considered within the spectrum of allelopathy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13

    Article  Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Álvarez-Loayza P, White JF Jr, Torres MS, Balslev H, Kristiansen T, Svenning J-C, Gil N (2011) Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PLoS ONE 6:e16386. doi:10.1371/journal.pone.0016386PLOS.one

    Article  PubMed  CAS  Google Scholar 

  • Aly AH, Edrada-Ebel RA, Wray V, Müller WEG, Kozytska S, Hentschel U, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochem 69:1716–1725

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Anaya AL, Mata R, Sims JJ, González-Coloma A, Cruz-Ortega R, Guadaño A, Hernández-Bautista BE, Midland SL, Ríos G, Gómez-Pompa A (2003a) Allelochemical potential of Callicarpa acuminata. J Chem Ecol 29:2761–2775

    Article  PubMed  CAS  Google Scholar 

  • Anaya AL, Torres-Barragán A, Hernández-Bautista BE, Cruz-Ortega R, Saucedo-García A, Flores-Carmona C, Gómez-Pompa A (2003b) Bioprospection studies at El Eden: from plants to fungi. In: Gómez-Pompa A, Allen MF, Fedick SL, Jiménez-Osornio JJ (eds) The lowland Maya area: three millennia at the human-wildland interface. Food Products Press, The Haworth Press Inc, New York, pp 447–460

    Google Scholar 

  • Anaya AL, Macías-Rubalcava ML, Cruz-Ortega R, García-Santana C, Sánchez-Monterrubio P, Hernández-Bautista BE, Mata R (2005) Allelochemicals from Stauranthus perforatus, a rutaceous tree of the Yucatan Peninsula, Mexico. Phytochem 66:487–494

    Article  CAS  Google Scholar 

  • Anaya AL, Espinosa-García F (2006) Ecología Química: la química de la naturaleza que entreteje a los seres vivos. Revista Ciencias 83:4–13

    Google Scholar 

  • Arnold AE, Maynard Z, Gilbert G, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert G (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Article  Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    Article  PubMed  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Barrero AF, Herrador MM, Quílez del Moral JF, Arteaga P, Meine N, Pérez-Morales C, Catalán JV (2011) Efficient synthesis of the anticancer b-elemene and other bioactive alemanes from sustainable germacrone. Org Biomol Chem 9:1118–1125

    Article  PubMed  CAS  Google Scholar 

  • Bednarz CW, Bridges DC, Brown SM (2000) Analysis of cotton yield stability across population densities. Agron J 92:128–135

    Google Scholar 

  • Boomsma CR, Vyn TJ (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Res 108:14–31

    Article  Google Scholar 

  • Bridgemohan P, Mc David CR (1993) A model of the competitive relationships between R. cochinchinensis and Z. mays. Ann Appl Biol 123:649–656

    Article  Google Scholar 

  • Brundrett M (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer-Verlag, Berlin, pp 281–293

    Chapter  Google Scholar 

  • Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733

    Article  PubMed  CAS  Google Scholar 

  • Carroll GC (1991) Beyond pest deterrence-alternative strategies and hidden costs of endophytic mutualisms in vascular plants. In: Andrews JA, Hirano SS (eds) Microbial ecology of leaves. Springer-Verlag, New York, pp 358–375

    Chapter  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  PubMed  CAS  Google Scholar 

  • Connolly JD (1991) Structural elucidation of some natural products. In Atta-Ur-Rahman (ed) Studies in natural products chemistry. Elsevier, Amsterdam, 9:256–258

    Google Scholar 

  • Costa Pinto LSR, Azevedo JL, Pereira JO, Carneiro Vieira ML, Labate CA (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147:609–615

    Article  Google Scholar 

  • Cronk QCB, Fuller JL (2001) Invaders: the threat to natural ecosystems. Earthscan, London

    Google Scholar 

  • Cruz-Ortega R, Lara-Núñez A, Anaya AL (2007) Allelochemical stress can trigger oxidative damage in receptor plants: mode of action of phytotoxicity. Plant Signal Behav 2:269–270

    Article  PubMed  Google Scholar 

  • Cruz-Ortega R, Alvarez-Añorve M, Romero-Romero MT, Lara-Núñez A, Anaya AL (2008) Growth and oxidative damage effects of Sicyos deppeiweed on tomato. Allelopath J 21:83–94

    Google Scholar 

  • Delgado M, Ortiz-Domínguez A, Zambrano C (2006) Resistencia de Rottboellia cochinchinensis (Lour.) W.D. al herbicida Nicosulfuron en cultivos de Maíz. Agron Trop 56:171–182

    Google Scholar 

  • Dingle J, Mcgee PA (2003) Some endophytic fungi reduce the density of pustules of Puccinia recondita f.sp. tritici in wheat. Mycol Res 107:310–316

    Article  PubMed  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Article  Google Scholar 

  • Eisner T, Meinwald J (eds) (1995) Chemical ecology. National Academy Press, Wasshington, pp v–vii

    Google Scholar 

  • Espinosa-García FJ, Langenheim JH (1990) The endophytic fungal community in leaves of a coastal redwood population—diversity and spatial patterns. New Phytol 116:89–97

    Article  Google Scholar 

  • Espinosa-García FJ, Rollinger J, Langenheim JH (1996) Coastal redwood leaf endophytes: their occurrence, interactions and response to host volatile terpenoids. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematic, ecology and evolution. The American Phytopathological Society Press, Saint Paul, pp 101–120

    Google Scholar 

  • Espinosa-García FJ, Sarukhán J (1997) Manual de malezas del Valle de México. UNAM-Fondo de Cultura Económica, México

    Google Scholar 

  • Esqueda-Esquivel VA (2005) Efecto de herbicidas sobre plantas y semillas de Rottboellia cochinchinensis (Lour.) W. Clayton, en caña de azúcar. Agron Mesoam 161:45–50

    Google Scholar 

  • Ezra D, Hess WH, Strobel GA (2004a) New endophytic isolates of M. albus, a volatile antibiotic-producing fungus. Microbiol 150:4023–4031

    Article  CAS  Google Scholar 

  • Ezra D, Jasper J, Rogers T, Knighton B, Grimsrud E, Strobel GA (2004b) Proton transfer reaction-mass spectrometry as a technique to measure volatile emissions of M. albus. Plant Sci 166:1471–1477

    Article  CAS  Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    Article  PubMed  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the funtional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257

    Article  CAS  Google Scholar 

  • Fumanal B, Plenchette C, Chauvel B, Bretagnolle F (2006) Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza 17:25–35

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351

    Google Scholar 

  • Gao F, Yong Y, Dai C (2011) Effects of endophytic fungal elicitor on two kinds of terpenoids production and physiological indexes in Euphorbia pekinensis suspension cells. J Med Plants Res 5:4418–4425

    CAS  Google Scholar 

  • González MC, Anaya AL, Glenn AE, Saucedo-García A, Macías-Rubalcava ML, Hanlin RT (2007) A new endophytic ascomycete from El Eden Ecological Reserve, Quintana Roo, México. Mycotaxon 101:251–260

    Google Scholar 

  • González MC, Anaya AL, Glenn AE, Macías-Rubalcava ML, Hernández-Bautista BE, Hanlin RT (2009) Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. Mycotaxon 110:363–372

    Article  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nat Rev Microbiol 435:819–823

    CAS  Google Scholar 

  • Guo BH, Wang YC, Zhou XW, Hu K, Tan F, Miao ZQ, Tang KX (2006) An endophytic Taxol-producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr J Biotechnol 5:875–877

    CAS  Google Scholar 

  • Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ (1993) Mycorrhizal influence of intra- and interspecific neighbor interactions among co-occurring prairie grasses. J Ecol 81:787–795

    Article  Google Scholar 

  • Hawkes CV, Belnap J, D’Antonio C, Firestone MK (2006) Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant Soil 281:369–380

    Article  CAS  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. East-West Centre and University Press of Hawaii, Honolulu

    Google Scholar 

  • Huang WY, Hyde KD, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Eco Bot 61:14–30

    Article  CAS  Google Scholar 

  • IAS International Allelopathy Society (1996) In: Proceedings of the first world congress on allelopathy, Cádiz, España

    Google Scholar 

  • Istifadah N, Mcgee PA (2006) Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Australas Plant Pathol 35:411–418

    Article  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago trucuncatula phospate transporter indispensable fro the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725

    Article  PubMed  CAS  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Kobayashi K, Itaya D, Mahatamnuchoke P, Pornprom T (2008) Allelopathic potential of itchgrass (Rottboellia exaltata L. f.) powder incorporated into soil. Weed Biol Manag 8:64–68

    Article  Google Scholar 

  • Koide RT (1991) Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic. Oecologia 85:389–395

    Article  Google Scholar 

  • Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007a) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  PubMed  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007b) An alternative mode of early land plant colonization by putative endomycorrhizal fungi. Plant Signal Behav 2:125–126

    Article  PubMed  Google Scholar 

  • Krohn K, Michel A, Flörke U, Aust HJ, Draeger S, Schulz B (1994) Biologically active metabolites from fungi, 5. Palmarumycins C1–C16 from Coniothyrium sp.: isolation, structure elucidation, and biological activity. Liebigs Ann Chem 11:1099–1108

    Article  Google Scholar 

  • Lara-Núñez A, Romero-Romero T, Ventura JL, Blancas V, Anaya AL, Cruz-Ortega R (2006) Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill. Plant Cell Environ 29:2009–2016

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Pan JJ, May G (2009) Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol Lett 299:31–37

    Article  PubMed  CAS  Google Scholar 

  • Leuchtmann A, Petrini O, Petrini LE, Carroll GC (1992) Isozyme polymorphism in six endophytic Phyllosticta species. Mycol Res 96:287–294

    Article  CAS  Google Scholar 

  • Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond Ser B Biol Sci 270:775–781

    Article  Google Scholar 

  • Li HM, Sullivan R, Moy M, Kobayashi DY, Belanger FC (2004) Expression of a novel chitinase by the fungal endophyte in Poa ampla. Mycologia 96:526–536

    Article  PubMed  CAS  Google Scholar 

  • Li Y-C, Tao W-Y (2009) Effects of paclitaxel-producing fungal endophytes on growth and paclitaxel formation of Taxus cuspidata cells. Plant Growth Regul 58:97–105

    Article  CAS  Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • Macías-Rubalcava ML, Hernández-Bautista BE, Jiménez-Estrada M, Anaya AL (2007) Pentacyclic triterpenes with selective bioactivity from the leaves of Sebastiania adenophora, Euphorbiaceae. J Chem Ecol 33:147–156

    Article  PubMed  CAS  Google Scholar 

  • Macías-Rubalcava ML, Hernández-Bautista BE, Jiménez-Estrada M, González MC, Glenn AE, Hanlin RT, Hernández-Ortega S, Saucedo-García A, Muria-González JM, Anaya AL (2008) Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochem 69:1185–1196

    Article  CAS  Google Scholar 

  • Macías-Rubalcava ML, Hernández-Bautista BE, Oropeza F, Duarte G, González MC, Glenn AE, Hanlin RT, Anaya AL (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin DJ, Hibbett DS, Lutzoni F, Spatafora JW, Vilgalys R (2009) The search for the fungal tree of life. Trends Microbiol 17:488–497

    Article  PubMed  CAS  Google Scholar 

  • Mejía LC, Rojas EI, Maynard Z, Bael SV, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14

    Article  Google Scholar 

  • Moy M, Li HJM, Sullivan R, White JF, Belanger FC (2002) Endophytic fungal b-1,6-glucanase expression in the infected host grass. Plant Physiol 130:1298–1308

    Article  PubMed  CAS  Google Scholar 

  • Mucciarelli M, Camusso W, Maffei M, Panicco P, Bicchi C (2007) Volatile terpenoids of endophyte-free and infected peppermint (Mentha piperita L.): chemical partitioning of a symbiosis. Microb Ecol 54:685–696

    Article  PubMed  CAS  Google Scholar 

  • Muthukumar T, Udaiyan K (2000) Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India. Mycorrhiza 9:297–313

    Article  Google Scholar 

  • Nilsson MC (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98:1–7

    Article  Google Scholar 

  • Orr SP, Rudgers JA, Clay K (2005) Invasive plants can inhibit native tree seedlings: testing potential allelopathic mechanisms. Plant Ecol 181:153–165

    Article  Google Scholar 

  • Pan JJ, May G (2009) Fungal-fungal associations affect the assembly of endophyte communities in Maize (Zea mays). Microb Ecol 58:668–678

    Article  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer-Verlag, New York, pp 179–197

    Chapter  Google Scholar 

  • Petrini O (1996) Ecological and physiological aspects of host-specificity in endophytic fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematic, ecology and evolution. APS Press, Saint Paul, pp 87–100

    Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  PubMed  CAS  Google Scholar 

  • Prada H, Ávila L, Sierra R, Bernal A, Restrepo S (2009) Caracterización morfológica y molecular del antagonismo entre el endofito Diaporthe sp. aislado de frailejón (Espeletia sp.) y el fitopatógeno Phytophthora infestans. Rev Iberoam Micol 26:198–201

    Article  PubMed  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants a matter of mycotrophism. Biosystems 6:153–164

    Article  PubMed  CAS  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716

    Article  Google Scholar 

  • Rinaudo V, Bàrberi P, Giovannetti M, van der Heijden MGA (2010) Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333:7–20

    Article  CAS  Google Scholar 

  • Rivera JA, Roberto EC, Montoya R (2007) Effect of the population density of itchgrass (Rottboellia cochinchinensis L. SW. Clayton) on the cultivation of maize ICA V-109. Temas Agrarios 12:51–61

    Google Scholar 

  • Rodriguez R, Redman RS (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Romero-Romero T, Sanchez-Nieto S, San Juan-Badillo A, Anaya AL (2005) Comparative effects of allelochemical and water stress in roots of Lycopersicon esculentum Mill. (Solanaceae). Plant Sci 168:1059–1066

    Article  CAS  Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araujo WL, dos Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of witches′ broom disease. Int J Biol Sci 1:24–33

    Article  PubMed  CAS  Google Scholar 

  • Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21:107–124

    Article  Google Scholar 

  • Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant-fungal symbiosis. Ecology 88:18–25

    Article  PubMed  Google Scholar 

  • Rudgers JA, Orr S (2009) Non-native grass alters growth of native tree species via leaf and soil microbes. J Ecol 97:247–255

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Evol Syst 29:319–343

    Article  Google Scholar 

  • Saucedo-García A (2006) Master thesis, UNAM México

    Google Scholar 

  • Saunders M, Kohn LM (2009) Evidence for alteration of fungal endophyte community assembly by host defense compounds. New Phytol 182:229–238

    Article  PubMed  CAS  Google Scholar 

  • Schroeder-Moreno MS, Janos DP (2008) Intra- and inter-specific density affects plant growth responses to arbuscular mycorrhizal. Botany 86:1180–1193

    Article  Google Scholar 

  • SchüBler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Gloucester, England

    Google Scholar 

  • Schulz B, Römmert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283

    Article  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–687

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer-Verlag, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Selosse M-A, Le Tacon F (1998) The land flora: a phototroph–fungus partnership? Tree 13:15–20

    PubMed  CAS  Google Scholar 

  • Sieber TN, Sieber-Canavesi F, Dorworth CE (1991) Endophytic fungi of red alder (Alnus rubra) leaves and twigs in British Columbia. Can J Bot 69:407–411

    Article  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Singh LP, Gill SG, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Article  PubMed  CAS  Google Scholar 

  • Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith SE, Barker SJ (2002) Plant phosphate transporter genes help harness the nutritional benefits of arbuscular mycorrhizal symbiosis. Trends Plant Sci 75:189–190

    Article  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae. Science 260:214–216

    Article  PubMed  CAS  Google Scholar 

  • Stone JK, Polishook JD, White JF (2004) Endophytic fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier Academic Press, China, pp 241–270

    Google Scholar 

  • Strahan RE, Griffin JL, Reynolds DB, Miller DK (2000) Interference between Rottboellia cochinchinensis and Zea mays. Weed Technol 48:205–211

    CAS  Google Scholar 

  • Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  CAS  Google Scholar 

  • Strobel GA, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  • Strobel GA (2006) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33:514–522

    Article  PubMed  CAS  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Suto M, Takebayashi M, Saito K, Tanaka M, Yokota A, Tomita F (2002) Endophytes as producers of xylanase. J Biosci Bioeng 93:88–90

    PubMed  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Tanga J, Xua L, Chena X, Hu S (2009) Interaction between C4 barnyard grass and C3 upland rice under elevated CO2: Impact of mycorrhizae. Acta Oecol 35:227–235

    Article  Google Scholar 

  • Thompson JD (1991) Phenotypic plasticity as a component of evolutionary change. Trends Ecol Evol 6:246–249

    Article  PubMed  CAS  Google Scholar 

  • Tkacz JS (2000) Polyketide and peptide products of endophytic fungi: variations on two biosynthetic themes of secondary metabolism. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 263–294

    Google Scholar 

  • Wang RZ (2006) The occurrence of C4 photosynthesis in Yunnan province, a tropical region in South-western China. Photosynthetica 44:286–292

    Article  Google Scholar 

  • Weidenhamer JD, Hartnett DC, Romeo JT (1989) Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. J Appl Ecol 26:613–624

    Article  CAS  Google Scholar 

  • Weidenhamer JD (2006) Distinguishing allelopathy from resource competition: the role of density. In: Reigosa MJ, Perdol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Netherlands, pp 85–103

    Google Scholar 

  • White JF Jr, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plantarum 138:440–446

    Article  CAS  Google Scholar 

  • Wilson D (1995) Endophyte—the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449

    Article  PubMed  CAS  Google Scholar 

  • Yuan Z-L, Zhang C-L, Lin F-C (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    Article  CAS  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luisa Anaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anaya, A.L., Saucedo-García, A., Contreras-Ramos, S.M., Cruz-Ortega, R. (2013). Plant-Mycorrhizae and Endophytic Fungi Interactions: Broad Spectrum of Allelopathy Studies. In: Cheema, Z., Farooq, M., Wahid, A. (eds) Allelopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_4

Download citation

Publish with us

Policies and ethics