Skip to main content

Microscopy for Modeling of Cell–Cell Allelopathic Interactions

  • Chapter
  • First Online:
Allelopathy

Abstract

The application of various microscopy methods—from stereomicroscopy to luminescence microscopy, microspectrofluorimetry and laser-scanning confocal microscopy—has been considered as an approach to model the cell–cell contacts and interactions in allelopathy. It bases on the direct observations of both secretions released from allelopathic species and the interaction(s) with the cell acceptors as biosensors (unicellular plant generative and vegetative microspores). Special attention was paid to the interactions with pigmented and fluorescing components of the secretions released by the cell donors from allelopathically active plant species. Colored allelochemicals are considered as histochemical dyes for the analysis of cellular mechanisms at the allelopathic contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aliotta G, Cafiero G (1999) Biological properties of rue (Ruta graveolens L.). Potential use in sustainable agricultural systems. In: Dakshini KMM (Inderjit), Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 551–563

    Google Scholar 

  • Alstyne KL, Nelson AV, Vyvyan JR, Cancilla DA (2006) Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia 148:304–311

    Article  PubMed  Google Scholar 

  • Gaur S, Rana A, Chauhan SVS (2007) Pollen allelopathy: past achievements and future approach. Allelopathy J 20:115–126

    Google Scholar 

  • Gerbach PV (2002) The essential oil secreting structures of Prostanthera ovalifolia (Lamiaceae). Ann Bot 89:255–260

    Article  Google Scholar 

  • Gilroy S (1997) Fluorescence microscopy of living plant cells. Annu Rev Plant Physiol Plant Mol Biol 48:165–190

    Article  PubMed  CAS  Google Scholar 

  • Golovkin BN, Rudenskaya RN, Trofimova IA, Shreter AI (2001) Biologically active substances of plant origin, vol 3. Nauka, Moscow

    Google Scholar 

  • Hazak O, Bloch D, Poraty L, Stemberg H, Zhang J, Friml J, Yalovsky S (2010) A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol 8(1):e1000282. doi:10.1371/journal.pbio.1000282

    Article  PubMed  Google Scholar 

  • Huang X, Jiang H, Hao G (2009) Direct HPLC detection of benzodilactones and quinones in glands of Lysimachia fordiana. Fitoterapia 80:173–176

    Article  PubMed  CAS  Google Scholar 

  • Jaldappagari S, Motohashi N, Gangeenahalli MP, Naismith JH (2008) Bioactive mechanism of interaction between anthocyanins and macromolecules like DNA and proteins. Topics Heterocycl Chem 15:49–65

    Article  CAS  Google Scholar 

  • Karnaukhov VN, Yashin VA, Kulakov VI, Vershinin VM, Dudarev VV (1982) Apparatus for investigation of fluorescence characteristics of microscopic objects. US Patent, N4, 354, 114:1–14

    Google Scholar 

  • Karnaukhov VN, Yashin VA, Kulakov VI, Vershinin VM, Dudarev VV (1983) Apparatus for investigation of fluorescence characteristics of microscopic objects. Patent of England 2.039.03 R5R.CHI

    Google Scholar 

  • Karnaukhov VN, Yashin VA, Kazantsev AP, Karnaukhova NA, Kulakov VI (1987) Double-wave microfluorimeter-photometer based on standard attachment. Tsitologia (Cytology, USSR) 29:113–116

    Google Scholar 

  • Karnaukhova NA, Sergievich LA, Karnaukhov VN (2010) Application of microspectral analysis to study intracellular metabolism in single cells and cell systems. Nat Sci 2:444–449

    CAS  Google Scholar 

  • Mathesius U, Bayliss C, Weinman JJ, Schlaman HRM, Spaink HP, Rolfe BG, McCully ME, Djordjevic MA (1998) Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover. Molec Plant Microbe Interact 11(12):1223–1232

    Article  CAS  Google Scholar 

  • Murphy SD (1992) The determination of allelopathic potential of pollen and nectar. In: Linskens HF, Jackson IF (eds) Plant toxins analysis. Springer, Berlin, pp 333–357

    Google Scholar 

  • Murphy SD (1999) Pollen allelopathy. In: Dakshini KMM (Inderjit), Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 129–148

    Google Scholar 

  • Murphy SD (2007) Allelopathic pollen: isolating the allelopathic effects. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield, pp 185–198

    Google Scholar 

  • Pacek A, Stpiczynska M (2007) The structures of elaiophores of Oncidium cheirophorum Rchb.F. and Ornithocephalus kruegeri Rchb.F. (Orchidaceae). Acta Agrobot 60:9–14

    Google Scholar 

  • Pawley J, Pawley JB (2006) Handbook of biological confocal microscopy. Springer, Berlin

    Book  Google Scholar 

  • Roshchina VV (1999) Mechanisms of cell–cell communication. In: Narwal SS (ed) Allelopathy update, vol 2. Science Publishers, Enfield, pp 3–25

    Google Scholar 

  • Roshchina VV (2001a) Neurotransmitters in plant life. Science Publisher, Enfield

    Google Scholar 

  • Roshchina VV (2001b) Molecular-cellular mechanisms in pollen alllelopathy. Allelopathy J 8:11–28

    Google Scholar 

  • Roshchina VV (2002) Rutacridone as a fluorescent dye for the study of pollen. J Fluoresc 12:241–243

    Article  CAS  Google Scholar 

  • Roshchina VV (2003) Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction. J Fluoresc 13:403–420

    Article  CAS  Google Scholar 

  • Roshchina VV (2004) Cellular models to study the allelopathic mechanisms. Allelopathy J 13:3–16

    Google Scholar 

  • Roshchina VV (2005) Allelochemicals as fluorescent markers, dyes and probes. Allelopathy J 16:31–46

    Google Scholar 

  • Roshchina VV (2006a) Plant microspores as biosensors. Trends Modern Biol 126:262–274

    Google Scholar 

  • Roshchina VV (2006b) Chemosignaling in plant microspore cells. Biol Bull 33:414–420

    Google Scholar 

  • Roshchina VV (2007a) Cellular models as biosensors. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield, pp 5–22

    Google Scholar 

  • Roshchina VV (2007b) Luminescent cell analysis in allelopathy. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield, pp 103–115

    Google Scholar 

  • Roshchina VV (2008) Fluorescing world of plant secreting cells. Science Publisher, Enfield

    Google Scholar 

  • Roshchina VV, Karnaukhov VN (2010) The fluorescence analysis of the medicinal drugs’ interaction with unicellular biosensors. Pharmacia (Russia) 3:43–46

    Google Scholar 

  • Roshchina VV, Melnikova EV (1995) Spectral analysis of intact secretory cells and excretions of plants. Allelopathy J 2:179–188

    Google Scholar 

  • Roshchina VV, Melnikova EV (1996) Microspectrofluorometry: a new technique to study pollen allelopathy. Allelopathy J 3:51–58

    Google Scholar 

  • Roshchina VV, Melnikova EV (1999) Microspectrofluorimetry of intact secreting cells, with applications to the study of allelopathy. In: Dakshini KMM (Inderjit), Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 99–126

    Google Scholar 

  • Roshchina VV, Melnikova EV (1998) Allelopathy and plant generative cells. Participation of acetylcholine and histamine in a signalling at the interactions of pollen and pistil. Allelopathy J 5:171–182

    Google Scholar 

  • Roshchina VV, Roshchina VD (1993) The excretory function of higher plants. Springer, Berlin

    Book  Google Scholar 

  • Roshchina VV, Melnikova EV, Spiridonov NA, Kovaleva LV (1995) Azulenes, the blue pigments of pollen. Doklady Biol Sci 340:93–96

    Google Scholar 

  • Roshchina VV, Melnikova EV, Kovaleva LV (1996) Autofluorescence in system pollen-pistil of Hippeastrum hybridum. Doklady Biol Sci 349:118–120

    CAS  Google Scholar 

  • Roshchina VV, Melnikova EV, Karnaukhov VN, Golovkin BN (1997) Application of microspectrofluorimetry in spectral analysis of plant secretory cells. Biol Bull (Russia) 2:167–171

    Google Scholar 

  • Roshchina VV, Melnikova EV, Mit’kovskaya LI, Karnaukhov VN (1998) Microspectrofluorimetry for the study of intact plant secretory cells. J Gen Biol (Russia) 59:531–554

    Google Scholar 

  • Roshchina VV, Melnikova EV, Yashin VA, Karnaukhov VN (2002) Autofluorescence of intact spores of horsetail Equisetum arvense L. during their development. Biophysics (Russia) 47:318–324

    CAS  Google Scholar 

  • Roshchina VV, Yashin VA, Kononov AV (2004) Autofluorescence of plant microspores studied by confocal microscopy and microspectrofluorimetry. J Fluoresc 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Roshchina VV, Yashin VA, Kononov AV, Yashina AV (2007) Laser-scanning confocal microscopy (LSCM): study of plant secretory cells. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield, pp 93–102

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA (2008) Cell communication in pollen allelopathy analyzed with laser-scanning confocal microscopy. Allelopathy J 21:219–226

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA, Prizova NK (2009a) Models to study pollen allelopathy. Allelopathy J 23:3–24

    Google Scholar 

  • Roshchina VV, Yashin VA, Yashina AV, Gol’tyaev MV, Manokhina IA (2009b) Microscopic objects for the study of chemosignaling. In: Zinchenko VP, Kolesnikov SS, Berezhnov AV (eds) Reception and intracellular signalling. Biological Center of RAS, Pushchino, pp 699–703

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA, Gol’tyaev MV (2011a) Fluorescence of biologically active compounds in plant secretory cells. In: Narwal SS, Pavlovic P, Jacob J (eds) Research methods in plant science, vol 2., Forestry and AgroforestryStudium Press, Houston, pp 3–25

    Google Scholar 

  • Roshchina VV, Yashin VA, Yashina AV, Gol’tyaev MV (2011b) Colored allelochemicals in modelling of cell–cell allelopathic interactions. Allelopathy J 28:1–12

    Google Scholar 

  • Roshchina VV, Yashin VA, Vikhlyantsev IM (2011c) Fluorescence of plant microspores as biosensors. Biol Membr 28:1–12

    Article  Google Scholar 

  • Roy S, Bhattacharya S, Das P, Chattopadhyay J (2007) Interaction among non-toxic phytoplankton, toxic phytoplankton and zooplankton: inferences from field observations. J Biol Phys 33:1–17

    Article  PubMed  Google Scholar 

  • Salih A, Jones A, Bass D, Cox G (1997) Confocal imaging of exine for grass pollen analysis. Grana 36:215–224

    Article  Google Scholar 

  • Sharma AD, Sharma R (1999) Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochem 52:1313–1318

    Article  Google Scholar 

  • Solé J, García-Ladona E, Ruardij P, Estrada M (2005) Modelling allelopathy among marine alga. Ecol Model 183:373–384

    Article  Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen, biology, biochemistry, managements. Springer, Berlin

    Google Scholar 

  • Wymer CL, Beven AF, Boudonck K, Lloyd CW (1999) Confocal microscopy of plant cells. Methods Molec Biol 122:103–130

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria V. Roshchina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roshchina, V.V., Yashin, V.A., Yashina, A.V., Goltyaev, M.V. (2013). Microscopy for Modeling of Cell–Cell Allelopathic Interactions. In: Cheema, Z., Farooq, M., Wahid, A. (eds) Allelopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_17

Download citation

Publish with us

Policies and ethics