Skip to main content

Information Methods for Predicting Risk and Outcome of Stroke

  • Chapter
Springer Handbook of Bio-/Neuroinformatics

Part of the book series: Springer Handbooks ((SHB))

  • 7220 Accesses

Abstract

Stroke is a major cause of disability and mortality in most economically developed countries. It is the second leading cause of death worldwide (after cancer and heart disease) [55.1,2] and a major cause of disability in adults in developed countries [55.3]. Personalized modeling is an emerging effective computational approach, which has been applied to various disciplines, such as in personalized drug design, ecology, business, and crime prevention; it has recently become more prominent in biomedical applications. Biomedical data on stroke risk factors and prognostic data are available in a large volume, but the data are complex and often difficult to apply to a specific person. Individualizing stroke risk prediction and prognosis will allow patients to focus on risk factors specific to them, thereby reducing their stroke risk and managing stroke outcomes more effectively. This chapter reviews various methods–conventional statistical methods and computational intelligent modeling methods for predicting risk and outcome of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANN:

artificial neural network

CHS:

cardiovascular health study

KNN:

K nearest neighbor

NINDS:

National Institute of Neurological Disorders and Stroke

NN:

neural network

SF:

straight filament

SNN:

spiking neural network

STD:

spatio-temporal data

WHO:

World Health Organization

WKNN:

weighted nearest neighbor

WWKNN:

weighted distance and weighted variables K nearest neighbor

eSNN:

evolving spiking neural network

References

  1. S.C. Johnston, S. Mendis, C.D. Mathers: Global variation in stroke burden and mortality: Estimates from monitoring, surveillance, and modelling, Lancet Neurol. 8, 345–354 (2009)

    Article  Google Scholar 

  2. P.M. Rothwell: The high cost of not funding stroke research: A comparison with heart disease and cancer, Lancet Neurol. 357, 1612–1616 (2001)

    Article  Google Scholar 

  3. M. Tobias, J. Cheung, H. McNaughton: Modelling Stroke: A Multi-State Life Table Model, Occasional Bulletin/Public Health Intelligence (Ministry of Health, Wellington 2002)

    Google Scholar 

  4. N. Kasabov: Brain-, Gene-, and Quantum Inspired Computational Intelligence: Challenges and Opportunities (Springer, Heidelberg 2007)

    Google Scholar 

  5. M. Tobias, J. Cheung, K. Carter, C. Anderson, V.L. Feigin: Stroke surveillance: Population-based estimates and projections for New Zealand, Aust. N. Z. J. Public Health 31, 520–525 (2007)

    Article  Google Scholar 

  6. W.J. Oczkowski, Susan Barreca: Neural network modeling accurately predicts the functional outcome of stroke survivors with moderate disabilities, Arch. Phys. Med. Rehabil. 78, 340–345 (1997)

    Article  Google Scholar 

  7. K. Aho, P. Harmsen, S. Hatano, J. Marquardsen, V.E. Smirnov, T. Strasser: Cerebrovascular disease in the community: Results of a WHO collaborative study, Bull. World Health Organ. 58, 113–130 (1980)

    Google Scholar 

  8. S. Seshadri, A. Beiser, M. Kelly-Hayes, C.S. Kase, R. Au, W.B. Kannel, P.A. Wolf: The lifetime risk of stroke: Estimates from the Framingham Study, Stroke 37, 345–350 (2006)

    Article  Google Scholar 

  9. K. Strong, C. Mathers, R. Bonita: Preventing stroke: Saving lives around the world, Lancet Neurol. 6, 182–187 (2007)

    Article  Google Scholar 

  10. J.J. Caro, K.F. Huybrechts, I. Duchesne: Management patterns and costs of acute ischemic stroke: An international study, Stroke 31, 582–590 (2000)

    Article  Google Scholar 

  11. R. Bonita, C.S. Anderson, J.B. Broad, K.D. Jamrozik, E.G. Stewart-Wynne, N.E. Anderson: Stroke incidence and case fatality in Australasia. A comparison of the Auckland and Perth population-based stroke registers, Stroke 25, 552–557 (1994)

    Article  Google Scholar 

  12. R. Bonita, J.B. Broad, R. Beaglehole: Changes in stroke incidence and case-fatality in Auckland, New Zealand, 1981–91, Lancet 342, 1470–1473 (1993)

    Article  Google Scholar 

  13. C.S. Anderson, K.D. Jamrozik, R.J. Broadhurst, E.G. Stewart-Wynne: Predicting survival for 1 year among different subtypes of stroke. Results from the Perth Community Stroke Study, Stroke 25, 1935–1944 (1994)

    Article  Google Scholar 

  14. R. Bonita, M.A. Ford, A.W. Stewart: Predicting survival after stroke: A three-year follow-up, Stroke 19, 669–673 (1988)

    Article  Google Scholar 

  15. C.S. Anderson, J. Linto, E.G. Stewart-Wynne: A population-based assessment of the impact and burden of caregiving for long-term stroke survivors, Stroke 26, 843–849 (1995)

    Article  Google Scholar 

  16. V. Feigin: When Lightning Strokes: An Illustrated Guide to Stroke Prevention and Recovery (Harper-Collins, Auckland 2004)

    Google Scholar 

  17. V. Feigin, K. Carter, M. Hackett, P.A. Barber, H. McNaughton, L. Dyall, M.H. Chen, C. Anderson: Ethnic disparities in incidence of stroke subtypes: Auckland regional community stroke study, 2002–2003, Lancet Neurol. 5, 130–139 (2006)

    Article  Google Scholar 

  18. S.M. Lai, P.W. Duncan, J. Keighley: Prediction of functional outcome after stroke: Comparison of the orpington prognostic scale and the NIH stroke scale, Stroke 29, 1838–1842 (1998)

    Article  Google Scholar 

  19. M.L. Kauhanen: Quality of life after stroke: Clinical, functional, psychosocial and cognitive correlates, Neurology (University of Oulu, Oulu 1999)

    Google Scholar 

  20. V.L. Feigin, S. Barker-Collo, V. Parag, H. Senior, C.M. Lawes, Y. Ratnasabapathy, E. Glen: Auckland stroke outcomes study. Part 1: Gender, stroke types, ethnicity and functional outcomes 5 years poststroke., Neurology 75, 1597–1607 (2010)

    Article  Google Scholar 

  21. A. Khosla, Y. Cao, C.Y. Lin, H.K. Chiu, J. Hu, H. Lee: An integrated machine learning approach to stroke prediction, 16th ACM SIGKDD Conf. Knowl. Discov. Data Min. (2010)

    Google Scholar 

  22. D.T. Larose: Discovering Knowledge in Data: An Introduction to Data Mining (Wiley, Hoboken 2005)

    MATH  Google Scholar 

  23. N. Kasabov: Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, London 2007)

    MATH  Google Scholar 

  24. G.S. Ginsburg, J.J. McCarthy: Personalized medicine: Revolutionizing drug discovery and patient care, Trends in Biotechnol. 19, 491–496 (2001)

    Article  Google Scholar 

  25. TEMU: Personalised Medicine: Current Trends and Scientific Challenges, TEMU 2008 (TEMU, Crete 2008), available online at http://www.temu.gr/2008/sessions.html

    Google Scholar 

  26. L.J. Lesko: Personalized medicine: Elusive dream or imminent reality, Clin. Pharmacol. & Ther. 81, 807–816 (2007)

    Article  Google Scholar 

  27. Personalized Medicine Coalition: The case for personalized medicine (2006), available online at http://www.personalizedmedicinecoalition.org/communications/pmc_pub_11_06.php

  28. E. Fix, J.L. Hodges: Discriminatory analysis: Nonparametric discrimination: Consistency properties (UASF School of Aviation Medicine, Randolph Field, 1951)

    Book  MATH  Google Scholar 

  29. V. Vapnik: Statistical Learning Theory (Wiley-Interscience, New York 1998)

    MATH  Google Scholar 

  30. N. Kasabov: To spike or not to spike: A probabilistic spiking neuron model, Neural Netw. 23, 16–19 (2010)

    Article  Google Scholar 

  31. S. Barber. AI: Neural Network for beginners (Part 1 of 3) (2007), available online at http://www.codeproject.com/KB/recipes/NeuralNetwork_1.aspx

  32. W. Maass: Networks of spiking neurons: The third generation of neural network models, Neural Netw. 10, 1659–1671 (1997)

    Article  Google Scholar 

  33. A.L. Hodgkin, A.F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  34. W. Gerstner: Time structure of the activity of neural network models, Phys. Rev. 51, 738–758 (1995)

    Google Scholar 

  35. W. Gerstner, W.M. Kistler: Neuron Models: Single Neurons, Populations, Plasticity (Cambridge Univ. Press, Cambridge 2002)

    Book  MATH  Google Scholar 

  36. W. Kistler, W. Gerstner: Reduction of Hodgkin–Huxley equations to a single variable threshold model, Neural Comput. 9, 1015–1045 (1997)

    Article  Google Scholar 

  37. W. Maass, C.M. Bishop: Pulsed Neural Networks (MIT Press, Cambridge 1999)

    MATH  Google Scholar 

  38. E.M. Izhikevich: Which model to use for cortical spiking neurons, IEEE Trans. Neural Netw. 15, 1063–1070 (2004)

    Article  Google Scholar 

  39. E.M. Izhikevich: Dynamical Systems in Neuroscience (MIT Press, Cambridge 2007)

    Google Scholar 

  40. E.M. Izhikevich, G.M. Edelman: Large-scale model of mammalian thalamocortical systems, Proc. Natl. Acad. Sci. USA 105(9), 3593–3598 (2008)

    Article  Google Scholar 

  41. W.C. Yau, D.K. Kumar, S.P. Arjunan: Visual recognition of speech consonants using facial movement features, Integr. Comput.-Aided Eng. 14, 49–61 (2007)

    Google Scholar 

  42. C. Fyfe, W. Barbakh, W.C. Ooi, H. Ko: Topological mappings of video and audio data, Int. J. Neural Syst. 18, 481–489 (2008)

    Article  Google Scholar 

  43. N. Tsapatsoulis, K. Rapantzikos, C. Pattichis: An embedded saliency map estimator scheme: Application to video encoding, Int. J. Neural Syst. 17, 289–304 (2007)

    Article  Google Scholar 

  44. N.C. Schneider, D. Graupe: A modified lamstar neural network and its applications, Int. J. Neural Syst. 18, 331–337 (2008)

    Article  Google Scholar 

  45. V. Gant, R. Dybowski: Artificial Neural Networks: Practical Considerations for Clinical Applications. In: Clinical Applications of Neural Networks, ed. by R. Dybowski, V. Gant (Cambridge Univ. Press, Cambridge 2001)

    Google Scholar 

  46. T. Kiyan, T. Yildirim: Breast cancer diagnosis using statistical neural networks, Turk. Symp. Artif. Intell. Neural Netw. (Istanbul 2003)

    Google Scholar 

  47. P.J. Cowburn, J.G.F. Cleland, A.J.S. Coats, M. Komajda: Risk stratification in chronic heart failure, Eur. Heart J. 19, 696–710 (1996)

    Article  Google Scholar 

  48. E. Bartfay, W.J. Mackillop, J.L. Pater: Comparing the predictive value of neural network models to logistic regression models on the risk of death for small-cell lung cancer patients, Eur. J. Cancer Care 15, 115–124 (2006)

    Article  Google Scholar 

  49. T. Anita, B. Surekha, S.N. Mishra: Early diagnosis of ischemia stroke using neural network, 2009 Proc. Int. Conf. Man-Machine Syst. (ICoMMS) (Batu Ferringhi, Penang 2009)

    Google Scholar 

  50. K. Kaczmarczyk, A. Wit, M. Krawczyk, J. Zaborski: Gait classification in post-stroke patients using artificial neural networks, Gait & Posture 30, 207–210 (2009)

    Article  Google Scholar 

  51. S.G. Wysoski, L. Benuskova, N. Kasabov: On-line learning with structural adaptation in a network of spiking neurons for visual pattern recognition, 2006 Int. Conf. Artif. Neural Netw., Lecture Notes in Computer Science (Heidelberg, Berlin 2006) pp. 61–70

    Chapter  Google Scholar 

  52. U.M. Fayyad, G.G. Grinstein: Information Visualization in Data Mining and Knowledge Discovery (Morgan Kaufmann, Los altos 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Liang , Rita Krishnamurthi , Nikola Kasabov or Valery Feigin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Liang, W., Krishnamurthi, R., Kasabov, N., Feigin, V. (2014). Information Methods for Predicting Risk and Outcome of Stroke. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics