Skip to main content

Breeding for Salinity Tolerance

  • Chapter
  • First Online:

Abstract

Soil salinity is a major factor adversely affecting crop yields worldwide. It is estimated that worldwide about 1 billion ha of land is affected by salinity. In addition, salinity problem is increasing at a rate of about 10% annually worldwide. Salinity can cause a combination of complex interactions that affect plant metabolism, susceptibility to injury or internal nutrient requirement. The negative interactions of salts with crop plants may reduce growth and consequently nutrient use efficiency. Management practices which can be adopted to reduce negative effects of salts on plant growth includes leaching salts from soil profile, use of amendments such as gypsum, and use of farmyard manners. However, use of salt-tolerant crop species or genotypes within species is a very attractive strategy to reduce cost of salt reclamation and environmental pollution. Although salt tolerance is relatively low in most crop species, it is encouraging that genetic variability exists not only among species but also among genotypes of same species. Salt-tolerant crop species are barley, cotton, oats, rye, triticale, sugar beet, guar, and canola or rapseed. Plant resistance responses include both salt avoidance (selective uptake or exclusion mechanisms and salt secretion, such as through salt glands) and salt tolerance (osmotic adjustment to maintain turgor pressure, tissue tolerance to specific toxic ions, e.g., Na and Cl, and tissue dehydration tolerance).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  PubMed  CAS  Google Scholar 

  • Aharon GS, Apse MP, Duan S, Hua X, Blumwald E (2003) Characterization of a family of vacuolar Na+/H+antiporters in Arabidopsis thaliana. Plant Soil 253:245–256

    Article  CAS  Google Scholar 

  • Ashraf M (1984) Induced variability for salinity and aluminium tolerance by N-Methyl N-Nitrosourea treatment of fertilized egg cell of rice. Dissertation, University of Philippines

    Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic-stress resistance. Environ Exper Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Babu RC, Zhang J, Blum A, Ho DHT, Wu DR, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Cherian S, Reddy MP, Ferreira RB (2006) Transgenic plants with improved dehydration-stress tolerance: Progress and future prospects. Biol Plantarum 50:481–495

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    Article  PubMed  CAS  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. Sinauer, Sunderland

    Google Scholar 

  • Fageria NK (1985a) Relatório do projeto “Avaliação de cultivares de arroz para condições adversas do solo”. Embrapa-CNPAF, Goiânia

    Google Scholar 

  • Fageria NK (1985b) Salt tolerance of rice cultivars. Plant Soil 88:237–243

    Article  CAS  Google Scholar 

  • Fageria NK (1991) Tolerância de cultivares de arroz à salinidade. Pesq Agropecu Bras 26:281–288

    Google Scholar 

  • Fageria NK (1992) Maximizing crop yields. Dekker, New York

    Google Scholar 

  • Fageria NK, Baligar VC, Jones CA (2011a) Growth and mineral nutrition of field crops. CRC Press, Boca Raton

    Google Scholar 

  • Fageria NK, Barbosa Filho MP, Gheyi HR (1981) Avaliação de cultivares de arroz para tolerância à salinidade. Pesq Agropecu Bras 16:677–681

    Google Scholar 

  • Fageria NK, Gheyi HR, Moreira A (2011b) Nutrient bioavailability in salt affected soils. J Plant Nutr 34:945–962

    Article  CAS  Google Scholar 

  • Fageria NK, Soares Filho WS, Gheyi HR (2010) Melhoramento genético vegetal e seleção de cultivares tolerantes à salinidade. In: Gheyi HR, Dias NS, Lacerda CF (eds) Manejo da salinidade na agricultura: Estudos básicos e aplicados. INCT Sal, Fortaleza

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exper Bot 55:307–319

    Article  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+antiporter from rice. Plant Cell Physiol 45:146–159

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Gittins JR, Hiles ER, Pellny TK, Biricolti S, James DJ (2001) The Brassica napus extA promoter: A novel alternative promoter to CaMV 35S for directing transgene expression to young stem tissues and load bearing regions of transgenic apple trees (Malus pumila Mill.) Mol Breed 7:51–62

    Google Scholar 

  • Gossett DR, Banks SW, Millhollon EP, Lucas MC (1996) Antioxidant response to NaCl stress in a control and a NaCl-tolerant cotton line grown in the presence of paraquat, buthioninesulfoxime, and exogenous glutathione. Plant Physiol 112:803–809

    PubMed  Google Scholar 

  • Grover A, Kapoor A, Lakshmi OS, Agarwal S, Sahi C, Agarwal SK, Agarwal M, Dubey H (2001) Understanding molecular alphabets of the plant abiotic stress responses. Curr Sci 80:206–216

    CAS  Google Scholar 

  • Hale MG, Orcutt DM (1987) The physiology of plants under stress. Wiley, New York

    Google Scholar 

  • Hoshi T, Heinemann SH (2001) Regulation of cell function by methionine oxidation reduction. J Physiol 531:1–11

    Article  PubMed  CAS  Google Scholar 

  • Humphreys MO, Humphreys MW (2005) Breeding for stress resistance: general principles. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth Press, New York

    Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Do Choi Y, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increase trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  PubMed  CAS  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2006) Sodium chloride-ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environ Exper Bot 60:211–218

    Article  Google Scholar 

  • Kirch HH, Bartels D, Wei Y, Schnable PS, Wood AJ (2004) The ALDH gene super family of Arabidopsis. Trends Plant Sci 9:371–377

    Article  PubMed  CAS  Google Scholar 

  • Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Alvarez-Nakase AM, Takabe T, Takabe T (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomalbetaine aldehyde dehydrogenase from barley. Plant, Cell Environ 23:107–114

    Article  CAS  Google Scholar 

  • Kumar V, Shriram V, Nikam TD, Jawali N, Shitole MG (2008) Sodium chloride-induced changes in mineral nutrients and proline accumulation in indica rice cultivars differing in salt tolerance. J Plant Nutr 31:1999–2017

    Article  CAS  Google Scholar 

  • Lal R, Hall GF, Miller FP (1989) Soil degradation. I. basic processes. Land Degrad Rehabil 1:51–69

    Article  Google Scholar 

  • Lea PJ, Parry MAJ, Medrano H (2004) Improving resistance to drought and salinity in plants. Ann Appl Biol 144:249–250

    Article  Google Scholar 

  • Maas EV (1986) Salt tolerance of plants. Appl Agric Res 1:12–25

    Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition. Kluwer, Dordrecht

    Book  Google Scholar 

  • Mlcochová L, Chloupek O, Uptmoor R, Ordon F, Friedt W (2004) Molecular analysis of the barley cv. ‘Valticky’ and its X-ray-derived semidwarf-mutant ‘Diamant’. Plant Breed 123:421–427

    Article  Google Scholar 

  • Moghaieb REA, Tanaka N, Saneoka H, Murooka Y, Ono H, Morikawa H, Nakamura A, Nguyen NT, Suwa R, Fujita K (2006) Characterization of salt tolerance in ectoine-transformed tobacco plants (Nicotiana tabaccum): Photosynthesis, osmotic adjustment, and nitrogen partitioning. Plant Cell Environ 29:173–182

    Article  PubMed  CAS  Google Scholar 

  • National Academy of Sciences (1999) Water for the future: the West Bank Gaza strip, Israel, and Jordan. National Academy Press, Washington

    Google Scholar 

  • NIAB (1987). Nuclear Institute for Agriculture and Biology. Fifteen years of NIAB. NIAB, Faisalabad

    Google Scholar 

  • Noble CL, Rogers ME (1992) Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant Soil 146:99–107

    Article  CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+antiport gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  PubMed  CAS  Google Scholar 

  • Pessarakli M, Szabolcs I (1999) Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli M (ed) Handbook of plant and crop stress. Dekker, New York

    Chapter  Google Scholar 

  • Ponnamperuma FN (1977) Screening rice for tolerance to mineral stress. IRRI, Los Baños

    Google Scholar 

  • Rains DW, Goyal SS (2003) Strategies for managing crop production in saline environments: An overview. In: Sharma SK, Rains DW, Morgan RL (eds) Goyal SS. Haworth, New York

    Google Scholar 

  • Rao SA, McNeilly T (1999) Genetic basis of variation for salt tolerance in maize (Zea mays L.). Euphytica 108:145–150

    Article  Google Scholar 

  • Ribeiro MS, Barros MFC, Santos MBG (2009) Química dos solos salinos e sódicos. In: Melo VF, Alleoni LRF (eds) Química e mineralogia do solo. Parte II-Aplicações. Sociedade Brasileira de Ciência do Solo, Viçosa

    Google Scholar 

  • Rodrigues SM, Andrade MO, Gomes APS, Da Mata FM, Baracat-Pereira MC, Fontes EPB (2006) Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exper Bot 57:1909–1918

    Article  CAS  Google Scholar 

  • Romero HM, Berlett BS, Jensen PJ, Pell EJ, Tien M (2004) Investigations into the role of the plastidal peptide methionine sulfoxidereductase in response to oxidative stress in Arabidopsis. Plant Physiol 136:3784–3794

    Article  PubMed  CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garret DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  PubMed  CAS  Google Scholar 

  • Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991

    Article  PubMed  CAS  Google Scholar 

  • Sadanandom A, Piffanelli P, Knott R, Robinson C, Sharpe A, Lydiate D, Murphy DJ, Fairbairn DJ (1996) Identification of a peptide methionine sulfoxidereductase gene in an oleosin promoter from Brassica napus. Plant J 10:235–242

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata A, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Saqib M, AKhtar J, Qureshi RH (2008) Sodicity intensifies the effect of salinity on grain yield and yield components of wheat. J Plant Nutr 31:689–701

    Google Scholar 

  • Saqib M, Zorb C, Rengel Z, Schubert S (2005) Na + exclusion and salt resistance of wheat (Triticumaestivum) are improved by the expression of endogenous vacuolar Na+/H+ antiporters in roots and shoots. Plant Sci 169:959–965

    Article  CAS  Google Scholar 

  • Shannon MC (1996) New insights in plant breeding efforts for improved salt tolerance. HortTech 6:96–98

    Google Scholar 

  • Soil Science Society of America (2008) Glossary of soil science terms. American Society of Soil Science, Madison

    Google Scholar 

  • Szabolcs I (1994) Soil salinization. In: Pessarakli M (ed) Handbook of plant crop stress. Dekker, New York

    Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510

    Article  PubMed  CAS  Google Scholar 

  • Vinh NT, Paterson AH (2005) Genome mapping and its implications for improving stress resistance in plants. In: Ashraf M, Harris PJC (eds) Abiotic stresses: Plant resistance through breeding and molecular approaches. Haworth, New York

    Google Scholar 

  • Virmani SS (2003) Advances in hybrid rice research and development in the tropics. In: Virmani SS, Mao CX, Hardy B (eds) Hybrid rice for food security, poverty alleviation, and environmental protection. IRRI, Los Baños

    Google Scholar 

  • Wei W, Bilsborrow PE, Hooley P, Fincham DA, Lombi E, Forster BP (2003) Salinity induced differences in growth, ionic distribution, and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant Soil 250:183–191

    Article  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowles RD, Somero GN (1982) Living with water stress: evolution of osmolyte system. Sci 217:1214–1222

    Article  CAS  Google Scholar 

  • Zhao F, Zhang X, Li P, Zhao Y, Zhang H (2006) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breed 17:341–353

    Article  Google Scholar 

  • Zhu B, Su J, Chang MC, Verma DPS, Fan YL, Wu R (1998) Overexpression of a pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Plant Sci 139:41–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nand Kumar Fageria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fageria, N.K., Stone, L.F., Santos, A.B.d. (2012). Breeding for Salinity Tolerance. In: Fritsche-Neto, R., Borém, A. (eds) Plant Breeding for Abiotic Stress Tolerance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30553-5_7

Download citation

Publish with us

Policies and ethics