Skip to main content

The Ignition Delay, Laminar Flame Speed and Adiabatic Temperature Characteristics of n-Pentane, n-Hexane and n-Heptane Under O2/CO2 Atmosphere

  • Conference paper
  • First Online:
  • 1757 Accesses

Abstract

Oxy-fuel (O2/CO2) combustion is one of the several promising new technologies which can realize the integrated control of CO2, SO2, NOX and other pollutants. However, when fuels are burned in the high CO2 concentration environment, the combustion characteristics can be very different from conventional air-fired combustion. Such changes imply that the high CO2 concentration atmosphere has impacts on the combustion processes. In this paper, the ignition time, laminar flame speed and adiabatic temperature property of C5 ~ C7 n-alkane fuels were studied under both ordinary air atmosphere and O2/CO2 atmospheres over a wide range of CO2 concentration in the combustion systems. A new unified detailed chemical kinetic model was validated and used to simulate the three liquid hydrocarbon fuel’s flame characteristics. Based on the verified model, the influences of various parameters (atmosphere, excess oxygen ratio, O2 concentration, CO2 concentration, and alkane type) on the C5 ~ C7 n-alkane’s flame characteristics were systematically investigated. It can be concluded that high CO2 concentration atmosphere has negative effect on n-pentane, n-hexane and n-heptane flame’s ignition, laminar flame speed and adiabatic temperature. Besides, this work confirms that high CO2 concentration atmosphere’s chemical effects play a pronounced role on the flame characteristics, especially for the ignition time property.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Toftegaard MB, Brix J, Jensen PA, Glarborg P, Jensen AD. Oxy-fuel combustion of solid fuels. Prog Energy Combust Sci. 2010; 36(5):581–625.

    Article  Google Scholar 

  2. Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF. Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci. 2005;31(4):283–307.

    Article  Google Scholar 

  3. Taniguchi M, Shibata T. Kobayashi H:Prediction of lean flammability limit and flame propagation velocity for oxy-fuel fired pulverized coal combustion. P Combust Inst. 2011;33:3391–8.

    Article  Google Scholar 

  4. Toporov D, Bocian P, Heil P, Kellermann A, Stadler H, Tschunko S, Forster M. Kneer R: detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere. Combust Flame. 2008;155(4):605–18.

    Article  Google Scholar 

  5. Ji C, Dames E, Wang YL, Wang H, Egolfopoulos FN. Propagation and extinction of premixed C5~C12 n-alkane flames. Combust Flame. 2010;157(2):277–87.

    Article  Google Scholar 

  6. Kelley AP, Smallbone AJ, Zhu DL, Law CK. Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch sensitivity. P Combust Inst. 2011;33(1):963–70.

    Article  Google Scholar 

  7. van Lipzig JPJ, Nilsson EJK, de Goey LPH, Konnov AA. Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures. Fuel. 2011;90(8):2773–81.

    Article  Google Scholar 

  8. Hartmann M, Gushterova I, Fikri M, Schulz C, Schiebi R. Maas U: auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling. Combust Flame. 2011;158(1):172–8.

    Article  Google Scholar 

  9. Ra Y, Reitz RD. A combustion model for IC engine combustion simulations. Combust Flame. 2011;158(1):69–90.

    Article  Google Scholar 

  10. Smallbone AJ, Liu W, Law CK, You XQ, Wang H. Experimental and modeling study of laminar flame speed and non-premixed counterflow ignition of n-heptane. P Combust Inst. 2009;32(1):1245–52.

    Article  Google Scholar 

  11. Zhukov VP, Sechenov VA, Starikovskii AY. Ignition delay times in lean n-hexane-air mixture at high pressures. Combust Flame. 2004;136(1–2):257–9.

    Article  Google Scholar 

  12. Ribaucour M, Minetti R, Sochet LR. Autoignition of n-pentane and 1-pentane: Experimental data and kinetic modeling. Symp (Int) Combust. 1998;27(1):345–51.

    Article  Google Scholar 

  13. Burcat A, Seheller K. Lifshitz A: shock-tube investigation of comparative ignition delay times for C1 ~ C5 alkanes. Combust Flame. 1971;16(1):29–33.

    Article  Google Scholar 

  14. Ribaucour M, Minetti R, Sochet LR, Curran HJ, Pitz WJ, Westbrook CK. Ignition of isomers of pentane: an experimental and kinetic modeling study. P Combust Inst. 2000;28(2):1671–8.

    Article  Google Scholar 

  15. Dean AJ, Penyazkov OG, Sevruk KL. Varatharajan B: Autoignition of surrogate fuels at elevated temperatures and pressures. P Combust Inst. 2007;31(2):2481–8.

    Article  Google Scholar 

  16. Westbrook CK, Pitz WJ, Curran HC, Boercker J. Kunrath E: chemical kinetic modeling study of shock tube ignition of heptane isomers. Int J Chem Kinet. 2001;33:868–77.

    Article  Google Scholar 

  17. Smith JM, Simmie JM, Curran HJ. Autoignition of heptanes; experiments and modeling. Int J Chem Kinet. 2005;37(12): 728–36.

    Article  Google Scholar 

  18. Gas Research Institute. GRI-Mech version 3.0. California, 1999

    Google Scholar 

  19. Marinov NM, Pitz WJ, Westbrook CK, Vincitore AM, Castaldi MJ, Senkan SM, Melius CF. Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame. Combust Flame. 1998;114(1–2):192–213.

    Article  Google Scholar 

  20. Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK. A comprehensive modeling study of iso-octane oxidation. Combust Flame. 2002;129(3):253–80.

    Article  Google Scholar 

  21. National Institute of Standards and Technology. NIST Chemical Kinetics Database. Version 7.0, 2009.

    Google Scholar 

  22. Turns SR. An introduction to combustion: concepts and applications. Boston: McGraw Hill; 2000.

    Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (No. 51078163, 50976041, 51021065, 50976081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg & Tsinghua University Press

About this paper

Cite this paper

Zhao, R. et al. (2013). The Ignition Delay, Laminar Flame Speed and Adiabatic Temperature Characteristics of n-Pentane, n-Hexane and n-Heptane Under O2/CO2 Atmosphere. In: Qi, H., Zhao, B. (eds) Cleaner Combustion and Sustainable World. ISCC 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30445-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30445-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30444-6

  • Online ISBN: 978-3-642-30445-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics