Skip to main content

Variable Risk and the Evolution of the Defense Repertoire of the Tupelo Leafminer

  • Chapter
  • First Online:
  • 1786 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrams PA (2003) Can adaptive evolution or behaviour lead to diversification of traits determining a trade-off between foraging gain and predation risk? Evol Ecol Res 5:653–670

    Google Scholar 

  • Askew RR, Shaw MR (1974) Account of Chalcidoidea (Hymenoptera) parasitizing leaf-mining insects of deciduous trees in Britain. Biol J Linn Soc 6:289–335

    Google Scholar 

  • Auerbach M, Simberloff D (1989) Oviposition site preference and larval mortality in a leaf-mining moth. Ecol Entomol 14:131–140

    Article  Google Scholar 

  • Bacher S, Casas J, Dorn S (1996) Parasitoid vibrations as potential releasing stimulus of evasive behaviour in a leafminer. Physiol Entomol 21:33–43

    Article  Google Scholar 

  • Beldade P, Mateus ARA, Keller RA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol 20:1347–1363

    Article  PubMed  Google Scholar 

  • Benrey B, Denno RF (1997) The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78:987–999

    Google Scholar 

  • Broom M, Higginson AD, Ruxton GD (2010) Optimal investment across different aspects of anti-predator defences. J Theor Biol 263:579–586

    Article  PubMed  Google Scholar 

  • Casas J (1989) Foraging behavior of a leafminer parasitoid in the field. Ecol Entomol 14:257–265

    Article  Google Scholar 

  • Casas J, Bacher S, Tautz J, Meyhofer R, Pierre D (1998) Leaf vibrations and air movements in a leafminer-parasitoid system. Biol Control 11:147–153

    Article  Google Scholar 

  • Connor EF, Cargain MJ (1994) Density-related foraging behaviour in Closterocerus tricinctus, a parasitoid of the leaf-mining moth, Cameraria hamadryadella. Ecol Entomol 19:327–334

    Article  Google Scholar 

  • Connor EF, Taverner MP (1997) The evolution and adaptive significance of the leaf-mining habit. Oikos 79:6–25

    Article  Google Scholar 

  • Djemai I, Casas J, Magal C (2001) Matching host reactions to parasitoid wasp vibrations. In: Proceedings of the Royal Society Biological Sciences Series B, vol 268, London, pp 2403–2408

    Google Scholar 

  • Djemai I, Casas J, Magal C (2004) Parasitoid foraging decisions mediated by artificial vibrations. Anim Behav 67:567–571

    Article  Google Scholar 

  • Djemai I, Meyhöfer R, Casas J (2000) Geometrical games between a host and a parasitoid. Am Nat 156:257–265

    Article  Google Scholar 

  • Endler JA (1980) Natural selection on color patterns in Poecilia reticulata. Evolution 34:76–91

    Article  Google Scholar 

  • Endler JA (1986) Defense against predators. In: Feder ME, Lauder GV (eds) Predator-prey relationships: perspectives and approaches from the study of lower vertebrates. University of Chicago Press, Chicago and London, pp 109–134

    Google Scholar 

  • Faeth SH (1990) Aggregation of a leafminer, Cameraria, new species (Davis): consequences and causes. J Anim Ecol 59:569–586

    Article  Google Scholar 

  • Gates MW, Heraty JM, Schauff ME, Wagner DL, Whitfield JB, Wahl DB (2002) Survey of the parasitic hymenoptera on leafminers in California. J Hymenoptera Res 11:213–270

    Google Scholar 

  • Ghalambor CK, Walker JA, Reznick DN (2002) Multi-trait selection, adaptation, and constraints on the evolution of performance: an empirical example using Trinidadian guppies. Integr Comp Biol 42:1234–1234

    Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behavior. I, II. J Theor Biol 7(1–16):17–52

    Article  PubMed  CAS  Google Scholar 

  • Hering EM (1951) Biology of leaf miners. Berlin’s-Gravenhage, Germany

    Google Scholar 

  • Hill PSM (2001) Vibration and animal communication: a review. Am Zool 41:1135–1142

    Article  Google Scholar 

  • Johnson WT, Lyon HH (1991) Insects that feed on trees and shrubs, Cornell University Press, Ithaca

    Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups: ecology and evolution. Oxford University Press, New York

    Google Scholar 

  • Low C (2008a) Grouping increases visual detection risk by specialist parasitoids. Behav Ecol 19:532–538

    Article  Google Scholar 

  • Low C (2008b) Seismic behaviors of a leafminer, Antispila nysaefoliella (Lepidoptera: Heliozelidae). Fla Entomol 91:604–609

    Google Scholar 

  • Low C (2010) The presence of active larvae delays the emergence of conspecifics in the tupelo leafminer, Antispila nysaefoliella. Evol Ecol Res 12:545–553

    Google Scholar 

  • Low C (2012) An experimental test of the seismic behaviors of Antispila nysaefoliella (Lepidoptera: Heliozelidae). Fla Entomol 95:16–20

    Article  Google Scholar 

  • Low C, Scheffer SJ, Lewis ML, Gates MW (2012) The relationship between variable host grouping and functional responses among parasitoids of Antispila nysaefoliella (Lepidoptera: Heliozelidae). (In review)

    Google Scholar 

  • Low C, Wood SN, Nisbet RM (2009) The effects of group size, leaf size & density on larval performance. J Anim Ecol 78:152–160

    Article  PubMed  Google Scholar 

  • Mappes J, Marples NM, Endler JA (2005) The complex business of survival by aposematism. Trends Ecol Evol 20:598–603

    Article  PubMed  Google Scholar 

  • Meyhöfer R, Casas J (1999) Vibratory stimuli in host location by parasitic wasps. J Insect Physiol 45:967–971

    Article  PubMed  Google Scholar 

  • Morris DW (2011) Adaptation and habitat selection in the eco-evolutionary process. In: Proceedings of the Royal Society B-Biological Sciences, London, vol 278 pp 2401–2411

    Google Scholar 

  • Pearson DL (1989) What is the adaptive significance of multicomponent defensive repertoires. Oikos 54:251–253

    Article  Google Scholar 

  • Reznick D, Endler JA (1982) The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36:160–177

    Article  Google Scholar 

  • Rodriguez RL, Sullivan LE, Cocroft RB (2004) Vibrational communication and reproductive isolation in the Enchenopa binotata species complex of treehoppers (Hemiptera : Membracidae). Evolution 58:571–578

    PubMed  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed M (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, New York

    Google Scholar 

  • Ruxton GD, Speed MP, Broom M (2009) Identifying the ecological conditions that select for intermediate levels of aposematic signalling. Evol Ecol 23:491–501

    Article  Google Scholar 

  • Sih A (1980) Optimal behavior: can foragers balance two conflicting demands? Science 210:1041–1043

    Article  PubMed  CAS  Google Scholar 

  • Simons AM (2011) Modes of response to environmental change and the elusive empirical evidence for bet hedging. In: Proceedings of the Royal Society B-Biological Sciences, London, vol 278, pp 1601–1609

    Google Scholar 

  • Svensson GP, Lofstedt C, Skals N (2004) The odour makes the difference: male moths attracted by sex pheromones ignore the threat by predatory bats. Oikos 104:91–97

    Article  Google Scholar 

  • Turner FT, Pitcher TJ (1986) Attack abatement: A model for group protection by combined avoidance and dilution. Am Nat 128:228–240

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candace Low .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Low, C. (2012). Variable Risk and the Evolution of the Defense Repertoire of the Tupelo Leafminer. In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_9

Download citation

Publish with us

Policies and ethics