Skip to main content

Molecular Phylogenetic Trees: Topology of Multiparametric Poly-Genic/Phenic Tree Exhibits Higher Taxonomic Fidelity than Uniparametric Trees for Mono-Genic/Phenic Traits

  • Chapter
  • First Online:
  • 1827 Accesses

Abstract

Darwin (On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, John Murray, London 1859) used polygenic traits or characters to describe the relationships among a set of organisms in the form of phylogenetic trees that generally overlap the taxonomic hierarchy. Recently, phylogenetic trees are being constructed for single genes or proteins from a set of species for which sequences are available. Such trees for a given set of species exhibit different topologies for different genes or proteins causing considerable controversy due to the lack of an appropriate benchmark for taxonomic relationships. One of the solutions offered is to end-to-end ligate (concatenate) multiple sequences and generate a polygene or polyprotein string and align these among a set of species to construct phylogenetic trees that exhibit topologies comparable to taxonomic hierarchy. Nevertheless, the problem remains as trees using rRNA sequences do not offer a satisfactory benchmark to taxonomic hierarchy. We have developed an algorithm that compares the topology of a given phylogenetic tree to the taxonomic tree for the same set of species and estimates the clade-by-clade correspondence or Taxonomic fidelity between them. We further describe a novel method, “Darwin’s Dream,” based on Euclidean geometry to estimate all-pairs distances among species for at least three traits/characters/sequences. The topology of phylogenetic trees for polygenic traits built using this method offer superior Taxonomic fidelity to that for either uniparametric trees, for rRNA or even concatenated sequences. A consensus phylogeny for three mitochondrial polypeptides shows that using both Euclidean geometry and concatenation method, hemichordates and cephalochordates cluster with echinoderms at the root of chordates, while Urochordates group with protostomes. The method was further extended to generate a consensus polygenic tree for 15 tRNA synthetases from prokaryotes which exhibited superior taxonomic fidelity than trees for single proteins or 16 s rDNA or even that for 15 concatenated sequences. The method is also applicable for immunocrossreactivity or a combination of beta globin gene- and coding nucleotide sequences and amino acid sequences of beta globin polypeptide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Archie JW (1989) Homoplasy excess ratios: new indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. Syst Biol 38:253–269

    Google Scholar 

  • Bansode AJ (1985) Evolutionary relationship in Chiroptera: biochemical analysis, pp 1–163. PhD thesis, University of Poona, Pune, India

    Google Scholar 

  • Bargaje, R, Milner Kumar M, Modak SP (2012) Multiparametric phylogeny of 15 amino acyl tRNA synthetases and taxonomic fidelity (submitted for publication)

    Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res 40:D48–D53

    Article  PubMed  CAS  Google Scholar 

  • Blair JE, Hedges SB (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22:2275–2284

    Article  PubMed  CAS  Google Scholar 

  • Boake CR, Arnold SJ, Breden F, Meffert LM, Ritchie MG, Taylor BJ, Wolf JB, Moore AJ (2002) Genetic tools for studying adaptation and the evolution of behavior. Am Nat 160(suppl 6):S143–S159

    Article  PubMed  Google Scholar 

  • Brocchieri L (2001) Phylogenetic inferences from molecular sequences: review and critique. Theor Popul Biol 59(1):27–40

    Google Scholar 

  • Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 76:1967–1971

    Article  PubMed  CAS  Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates. Sinauer Associates, Sunderland

    Google Scholar 

  • Cao Y, Waddell PJ, Okada N, Hasegawa M (1998) The complete mitochondrial DNA sequence of the shark Mustelus manazo: evaluating rooting contradictions to living bony vertebrates. Mol Biol Evol 15:1637–1646

    Article  PubMed  CAS  Google Scholar 

  • Chapus C, Dufraigne C, Edwards S, Giron A, Fertil B, Deschavanne P (2005) Exploration of phylogenetic data using a global sequence analysis method. BMC Evol Biol 5:63

    Article  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  PubMed  CAS  Google Scholar 

  • Deschavanne PJ, Giron A, Vilain J, Fagot G, Fertil B (1999) Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Mol Biol Evol 16:1391–1399

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Fertil B, Giron A, Deschavanne PJ (2002) A genomic schism in birds revealed by phylogenetic analysis of DNA strings. Syst Biol 51:599–613

    Article  PubMed  Google Scholar 

  • Farris JS (1989) The retention index and the rescaled consistency index. Cladistics 5:417–419

    Article  Google Scholar 

  • Federhen S (2012) The NCBI taxonomy database. Nucleic Acids Res 40:D136–D143

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution (N Y) 39:783–791

    Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Fertil B, Massin M, Lespinats S, Devic C, Dumee P, Giron A (2005) GENSTYLE: exploration and analysis of DNA sequences with genomic signature. Nucleic Acids Res 33(Web Server issue):W512–W515

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    Article  PubMed  CAS  Google Scholar 

  • Fitch WM, Markowitz E (1970) An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem Genet 4:579–593

    Article  PubMed  CAS  Google Scholar 

  • Gadagkar SR, Rosenberg MS, Kumar S (2005) Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool B Mol Dev Evol B 304:64–74

    Article  Google Scholar 

  • Goodman M, Moore GW (1975) Darwinian evolution in the genealogy of haemoglobin. Nature 253:603–608

    Article  PubMed  CAS  Google Scholar 

  • Hennig W (1965) Phylogenetic systematics. Annu Rev Entomol 10:97–116

    Article  Google Scholar 

  • Hennig W (1975) Cladistic analysis or cladistic classification? A reply to Ernst Mayr. Syst Zool 24:244–256

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Kamakaka RT (1984) Homology of lens crystallins in Reptilia, pp 1–24. M Phil Dissertation, University of Poona, Pune, India

    Google Scholar 

  • King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni SN (1985) Homology of Amphibian lens crystallins, pp 1–36. M Phil Dissertation, University of Poona, Pune, India

    Google Scholar 

  • Lewin B, Krebs JE, Goldstein ES, Kilpatrick ST (2009) Lewin’s genes 10. Jones and Bartlett, Massachusetts

    Google Scholar 

  • Mayr E (1970) Populations, species, and evolution: an abridgment of animal species and evolution. Belknap Press of Harvard University Press, Harvard

    Google Scholar 

  • Mayr E (1974) The species problem. Arno Press, New York

    Google Scholar 

  • Milner Kumar M (2009) Multiparametric molecular phylogenetic trees in 3D. PhD thesis submitted to Department of zoology, Karnatak University, Dharwad, India

    Google Scholar 

  • Milner Kumar M, Modak SP (2011) Estimating taxonomic fidelity of phylogenetic trees (manuscript submitted for publication)

    Google Scholar 

  • Milner Kumar M, Modak SP (2012) Multiparametric molecular phylogeny of eukaryotic mitochondrial polypeptides and taxonomic fidelity estimation (manuscript submitted for publication)

    Google Scholar 

  • Milner M, Patwardhan V, Bansode A, Nevagi SA, Kulkarni S, Kamakaka R, Modak SP (2003) Constructing 3D phylogenetic trees. Curr Sci 85:1471–1478

    Google Scholar 

  • Milner M, Bansode AG, Lawrence AL, Nevagi SA, Patwardhan V, Modak SP (2004) Molecular phylogeny in 3-D. Curr Issues Mol Biol 6:189–200

    PubMed  CAS  Google Scholar 

  • Mount DW (2004) Bioinformatics: sequence and genome analysis. CSHL Press, New York

    Google Scholar 

  • Naylor GJP, Brown WM (1997) Structural biology and phylogenetic estimation. Nature 388:527–528

    Article  PubMed  CAS  Google Scholar 

  • Nuin P, Wang Z, Tillier E (2006) The accuracy of several multiple sequence alignment programs for proteins. BMC Bioinformatics 7:471

    Article  PubMed  Google Scholar 

  • Page RDM, Holmes EC (1998) Molecular evolution: a phylogenetic approach. Blackwell Publishing Limited, Oxford

    Google Scholar 

  • Patwardhan V (1992) Phylogeny of fish lens crystallins, pp 1–101. PhD thesis, University of Poona, Pune, India

    Google Scholar 

  • Rannala B, Yang Z (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:1645–1656

    PubMed  CAS  Google Scholar 

  • Rasmussen AS, Arnason U (1999) Phylogenetic studies of complete mitochondrial DNA molecules place cartilaginous fishes within the tree of bony fishes. J Mol Evol 48:118–123

    Article  PubMed  CAS  Google Scholar 

  • Rosbash M, Ford PJ, Bishop JO (1974) Analysis of the C-value paradox by molecular hybridization. Proc Natl Acad Sci U S A 71:3746–3750

    Article  PubMed  CAS  Google Scholar 

  • Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 28:1409–1438

    Google Scholar 

  • Suthers RA (1970) Visual, olfaction and taste. In: Wimsatt WA (ed) Biology of bats, vol 1. Academic press, New York, pp 265–304

    Google Scholar 

  • Takezaki N, Gojobori T (1999) Correct and incorrect vertebrate phylogenies obtained by the entire mitochondrial DNA sequences. Mol Bio Evol 16:590–601

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Woese C (1998) The universal ancestor. Proc Natl Acad Sci U S A 95:6854–6859

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol Biol Evol 14:717–724

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

A part of the work in this review contributed to the Ph.D. thesis of Milner Kumar at Karnatak University, Dharwad, India. We thank Prof. S. A. Nevagi for encouragement and Prof. N. K. Ganguly, New Delhi, India and Dr. Georges Spohr, Geneva, Switzerland, for critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohan Prabhakar Modak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Modak, S.P., Milner Kumar, M., Bargaje, R. (2012). Molecular Phylogenetic Trees: Topology of Multiparametric Poly-Genic/Phenic Tree Exhibits Higher Taxonomic Fidelity than Uniparametric Trees for Mono-Genic/Phenic Traits. In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_5

Download citation

Publish with us

Policies and ethics