Skip to main content

Polymorphism and Adaptation of Primate Colour Vision

  • Chapter
  • First Online:
Book cover Evolutionary Biology: Mechanisms and Trends

Abstract

Opsins provide an excellent model system for studying evolutionary interconnections at genetic, phenotypic and behavioural levels. Primates have evolved a unique ability for trichromatic colour vision from a dichromatic mammalian ancestor. This was accomplished via allelic differentiation (e.g. most New World monkeys) or gene duplication (e.g. Old World primates) of the middle to long-wavelength sensitive (M/LWS) opsin gene. However, questions remain regarding the behavioural adaptations of primate trichromacy. Allelic differentiation of the M/LWS opsins results in extensive colour vision variability in New World monkeys, where trichromats and dichromats are found in the same breeding population, enabling us to directly compare visual performances among different colour vision phenotypes. Thus, New World monkeys can serve as an excellent model to understand and evaluate the adaptive significance of primate trichromacy in a behavioural context. In this chapter, we summarise recent findings on colour vision evolution in vertebrates, with special emphasis on primates, and introduce our genetic and behavioural study on primate colour vision polymorphism and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen G (1879) The color sense: its origin and development. Trubner & Co, London

    Google Scholar 

  • Arrese CA, Beazley LD, Neumeyer C (2006) Behavioural evidence for marsupial trichromacy. Curr Biol 16:R193–R194

    PubMed  CAS  Google Scholar 

  • Arrese CA, Hart NS, Thomas N et al (2002) Trichromacy in Australian marsupials. Curr Biol 12:657–660

    PubMed  CAS  Google Scholar 

  • Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vision Res 48:2022–2041

    PubMed  CAS  Google Scholar 

  • Buchanan-Smith H, Smith AC, Surridge AK et al (2005) The effect of sex and color vision status on prey capture by captive and wild tamarins (Saguinus spp). Am J Primatol 66:S49

    Google Scholar 

  • Caine NG (2002) Seeing red: consequences of individual differences in color vision in callitrichid primates. In: Miller LE (ed) Eat or be eaten. Cambridge University Press, Cambridge, pp 58–73

    Google Scholar 

  • Caine NG, Mundy NI (2000) Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food colour. Proc R Soc Lond B 267:439–444

    CAS  Google Scholar 

  • Caine NG, Osorio D, Mundy NI (2010) A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity. Biol Lett 6:36–38

    PubMed  Google Scholar 

  • Changizi MA, Zhang Q, Shimojo S (2006) Bare skin, blood and the evolution of primate colour vision. Biol Lett 2:217–221

    PubMed  Google Scholar 

  • Chapman C, Russo SE (2007) Primate seed dispersal: linking behavioural ecology and forest community structure. In: Campbell CJ, Fuentes AF, MacKinnon KC et al (eds) Primates in perspective. Oxford University Press, Oxford, pp 510–525

    Google Scholar 

  • Chinen A, Hamaoka T, Yamada Y et al (2003) Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163:663–675

    PubMed  CAS  Google Scholar 

  • Collin SP, Knight MA, Davies WL et al (2003) Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol 13:R864–R865

    PubMed  CAS  Google Scholar 

  • Conner JK, Hartl DL (2004) A primer of ecological genetics. Sinauer Associates, Sunderland

    Google Scholar 

  • Cowing JA, Arrese CA, Davies WL et al (2008) Cone visual pigments in two marsupial species: the fat-tailed dunnart (Sminthopsis crassicaudata) and the honey possum (Tarsipes rostratus). Proc R Soc B 275:1491–1499

    PubMed  CAS  Google Scholar 

  • Cropp S, Boinski S, Li WH (2002) Allelic variation in the squirrel monkey X-linked color vision gene: biogeographical and behavioral correlates. J Mol Evol 54:734–745

    PubMed  CAS  Google Scholar 

  • Davies WL, Carvalho LS, Cowing JA et al (2007) Visual pigments of the platypus: a novel route to mammalian colour vision. Curr Biol 17:R161–R163

    PubMed  CAS  Google Scholar 

  • Davies WL, Carvalho LS, Tay BH et al (2009a) Into the blue: gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii. Genome Res 19:415–426

    PubMed  CAS  Google Scholar 

  • Davies WL, Collin SP, Hunt DM (2009b) Adaptive gene loss reflects differences in the visual ecology of basal vertebrates. Mol Biol Evol 26:1803–1809

    PubMed  CAS  Google Scholar 

  • Deeb SS, Lindsey DT, Hibiya Y et al (1992) Genotype-phenotype relationships in human red/green color-vision defects: molecular and psychophysical studies. Am J Hum Genet 51:687–700

    PubMed  CAS  Google Scholar 

  • Deeb SS (2006) Genetics of variation in human color vision and the retinal cone mosaic. Curr Opin Genet Dev 16:301–307

    PubMed  CAS  Google Scholar 

  • Dominy NJ, Lucas PW (2001) Ecological importance of trichromatic vision to primates. Nature 410:363–366

    PubMed  CAS  Google Scholar 

  • Dominy NJ, Lucas PW, Osorio D et al (2001) The sensory ecology of primate food perception. Evol Anthropol 10:171–186

    Google Scholar 

  • Dominy NJ (2004) Color as an indicator of food quality to anthropoid primates: ecological evidence and an evolutionary scenario. In: Ross C, Kay RF (eds) Anthropoid Origins. Kluwer Academic, New York, pp 599–628

    Google Scholar 

  • Dulai KS, Bowmaker JK, Mollon JD et al (1994) Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and Old World monkeys. Vision Res 34:2483–2491

    PubMed  CAS  Google Scholar 

  • Ebeling W, Natoli RC, Hemmi JM (2010) Diversity of color vision: not all Australian marsupials are trichromatic. PLoS ONE 5:e14231

    PubMed  CAS  Google Scholar 

  • Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94

    PubMed  CAS  Google Scholar 

  • Endler JA (2006) Disruptive and cryptic coloration. Proc R Soc B 273:2425–2426

    PubMed  Google Scholar 

  • Fernandez AA, Morris MR (2007) Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis. Am Nat 170:10–20

    PubMed  Google Scholar 

  • Fleagle JG (1999) Primate adaptation and evolution, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Gautier-Hion A, Duplantier J-M, Quris FF et al (1985) Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65:324–337

    Google Scholar 

  • Gullan P, Cranston P (2005) The insects: an outline of entomology. Blackwell Publishing, Oxford

    Google Scholar 

  • Heesy CP, Ross CF (2004) Mosaic evolution of activity pattern, diet and color vision in haplorhine primates. In: Ross CP, Kay RF (eds) Anthropoid origins: new visions. Kluwer Academic/Plenum Press, New York, pp 665–698

    Google Scholar 

  • Hendrickson A, Djajadi HR, Nakamura L et al (2000) Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography. J Comp Neurol 424:718–730

    PubMed  CAS  Google Scholar 

  • Hiramatsu C, Tsutsui T, Matsumoto Y et al (2005) Color-vision polymorphism in wild capuchins (Cebus capucinus) and spider monkeys (Ateles geoffroyi) in Costa Rica. Am J Primatol 67:447–461

    PubMed  CAS  Google Scholar 

  • Hiramatsu C, Melin AD, Aureli F et al (2008) Importance of achromatic contrast in short-range fruit foraging of primates. PLoS ONE 3:e3356

    PubMed  Google Scholar 

  • Hiramatsu C, Melin AD, Aureli F et al (2009) Interplay of olfaction and vision in fruit foraging of spider monkeys. Anim Behav 77:1421–1426

    Google Scholar 

  • Hiwatashi T, Okabe Y, Tsutsui T et al (2010) An explicit signature of balancing selection for color-vision variation in new world monkeys. Mol Biol Evol 27:453–464

    PubMed  CAS  Google Scholar 

  • Hiwatashi T, Mikami A, Katsumura T et al (2011) Gene conversion and purifying selection shape nucleotide variation in gibbon L/M opsin genes. BMC Evol Biol 11:312

    PubMed  CAS  Google Scholar 

  • Hopson JA, Crompton AW (1969) Origin of mammals. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Hunt DM, Carvalho LS, Cowing JA et al (2007) Spectral tuning of shortwave-sensitive visual pigments in vertebrates. Photochem Photobiol 83:303–310

    PubMed  CAS  Google Scholar 

  • Ibbotson RE, Hunt DM, Bowmaker JK et al (1992) Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkeys. Proc R Soc Lond B 247:145–154

    CAS  Google Scholar 

  • Isbell LA (2009) The fruit, the tree and the serpent: why we see so well. Harvard University Press, Boston

    Google Scholar 

  • Jacobs GH, Deegan JF II, Neitz J et al (1993) Photopigments and color vision in the nocturnal monkey, Aotus. Vision Res 33:1773–1783

    PubMed  CAS  Google Scholar 

  • Jacobs GH, Deegan JF II (2001) Photopigments and colour vision in New World monkeys from the family Atelidae. Proc R Soc Lond B 268:695–702

    CAS  Google Scholar 

  • Jacobs GH, Williams GA (2001) The prevalence of defective color vision in Old World monkeys and apes. Col Res Appl 26 (Suppl):S123–S127

    Google Scholar 

  • Jacobs GH, Deegan JF II, Tan Y et al (2002) Opsin gene and photopigment polymorphism in a prosimian primate. Vision Res 42:11–18

    PubMed  CAS  Google Scholar 

  • Jacobs GH, Rowe MP (2004) Evolution of vertebrate colour vision. Clin Exp Optom 87:206–216

    PubMed  Google Scholar 

  • Jacobs GH (2007) New World monkeys and color. Int J Primatol 28:729–759

    Google Scholar 

  • Jacobs GH (2008) Primate color vision: a comparative perspective. Vis Neurosci 25:619–633

    PubMed  Google Scholar 

  • Jacobs GH, Nathans J (2009) The evolution of primate color vision. Sci Am 300:56–63

    PubMed  Google Scholar 

  • Julliot C (1996) Fruit choice by red howler monkeys (Alouatta seniculus) in a tropical rain forest. Am J Primatol 40:261–282

    Google Scholar 

  • Kelber A, Roth LS (2006) Nocturnal colour vision—not as rare as we might think. J Exp Biol 209:781–788

    PubMed  Google Scholar 

  • Leighton M (1993) Modeling dietary selectivity by Bornean orangutans: evidence for integration of multiple criteria in fruit selection. Int J Primatol 14:257–313

    Google Scholar 

  • Leonhardt SD, Tung J, Camden JB et al (2009) Seeing red: behavioral evidence of trichromatic color vision in strepsirrhine primates. Behav Ecol 20:1–12

    Google Scholar 

  • Lev-Yadun S, Dafni A, Flaishman MA et al (2004) Plant coloration undermines herbivorous insect camouflage. BioEssays 26:1126–1130

    PubMed  Google Scholar 

  • Lucas PW, Darvell BW, Lee PKD et al (1998) Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatol 69:139–154

    PubMed  CAS  Google Scholar 

  • Lucas PW, Dominy NJ, Riba-Hernández P et al (2003) Evolution and function of routine trichromatic vision in primates. Evolution 57:2636–2643

    PubMed  Google Scholar 

  • McConkey KR, Aldy F, Ario A et al (2002) Selection of fruit by gibbons (Hylobates muelleri X agilis) in the rain forests of Central Borneo. Int J Primatol 23:123–145

    Google Scholar 

  • McConkey KR, Ario A, Aldy F et al (2003) Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu, Central Kalimantan. Int J Primatol 24:19–32

    Google Scholar 

  • Melin AD, Fedigan LM, Hiramatsu C et al (2007) Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins (Cebus capucinus). Anim Behav 73:205–214

    Google Scholar 

  • Melin AD, Fedigan LM, Hiramatsu C et al (2008) Polymorphic color vision in white-faced capuchins (Cebus capucinus): is there foraging niche divergence among phenotypes? Behav Ecol Sociobiol 62:659–670

    Google Scholar 

  • Melin AD, Fedigan LM, Hiramatsu C et al (2009) Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. Int J Primatol 30:753–775

    Google Scholar 

  • Melin AD, Fedigan LM, Young HC et al (2010) Can color vision variation explain sex differences in invertebrate foraging by capuchin monkeys? Curr Zool 56:300–312

    Google Scholar 

  • Melin AD, Moritz GL, Fosbury RAE et al (2012) Commentary: why aye-ayes see blue. Am J Primatol 74:185–192

    PubMed  Google Scholar 

  • Miller L (2002) Eat or be eaten. Cambridge University Press, Cambridge, p 297

    Google Scholar 

  • Mollon JD, Bowmaker JK, Jacobs GH (1984) Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B 222:373–399

    PubMed  CAS  Google Scholar 

  • Morgan MJ, Adam A, Mollon JD (1992) Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proc R Soc Lond B 248:291–295

    CAS  Google Scholar 

  • Mullen KT (1985) The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J Physiol 359:381–400

    PubMed  CAS  Google Scholar 

  • Nei M, Zhang J, Yokoyama S (1997) Color vision of ancestral organisms of higher primates. Mol Biol Evol 14:611–618

    PubMed  CAS  Google Scholar 

  • Olendorf R, Rodd FH, Punzalan D et al (2006) Frequency-dependent survival in natural guppy populations. Nature 441:633–636

    PubMed  CAS  Google Scholar 

  • Onishi A, Koike S, Ida M et al (1999) Dichromatism in macaque monkeys. Nature 402:139–140

    PubMed  CAS  Google Scholar 

  • Onishi A, Koike S, Ida-Hosonuma M et al (2002) Variations in long- and middle-wavelength-sensitive opsin gene loci in crab-eating monkeys. Vision Res 42:281–292

    PubMed  CAS  Google Scholar 

  • Osorio D, Vorobyev M (1996) Colour vision as an adaptation to frugivory in primates. Proc R Soc Lond B 263:593–599

    CAS  Google Scholar 

  • Osorio D, Smith AC, Vorobyev M et al (2004) Detection of fruit and the selection of primate visual pigments for color vision. Am Nat 164:696–708

    Google Scholar 

  • Parraga CA, Troscianko T, Tolhurst DJ (2002) Spatiochromatic properties of natural images and human vision. Curr Biol 12:483–487

    PubMed  CAS  Google Scholar 

  • Perini ES, Pessoa VF, Pessoa DM (2009) Detection of fruit by the Cerrado’s marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities. J Exp Zool Part A 311:289–302

    Google Scholar 

  • Perry GH, Martin RD, Verrelli BC (2007) Signatures of functional constraint at aye–aye opsin genes: the potential of adaptive color vision in a nocturnal primate. Mol Biol Evol 24:1963–1970

    PubMed  CAS  Google Scholar 

  • Pisani D, Mohun SM, Harris SR et al (2006) Molecular evidence for dim-light vision in the last common ancestor of the vertebrates. Curr Biol 16:R318–R319

    PubMed  CAS  Google Scholar 

  • Pokorny J, Lutze M, Cao D et al (2008) The color of night: surface color categorization by color defective observers under dim illuminations. Vis Neurosci 25:475–480

    PubMed  Google Scholar 

  • Punzalan D, Rodd FH, Hughes KA (2005) Perceptual processes and the maintenance of polymorphism through frequency-dependent predation. Evol Ecol 19:303–320

    Google Scholar 

  • Regan BC, Julliot C, Simmen B et al (2001) Fruits, foliage and the evolution of primate colour vision. Phil Trans R Soc B 356:229–283

    PubMed  CAS  Google Scholar 

  • Riba-Hernández P, Stoner KE, Lucas PW (2005) Sugar concentration of fruits and their detection via color in the Central American spider monkey (Ateles geoffroyi). Am J Primatol 67:411–423

    PubMed  Google Scholar 

  • Robinson SR (1994) Early vertebrate color vision. Nature 367:121

    Google Scholar 

  • Saito A, Mikami A, Kawamura S et al (2005) Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates. Am J Primatol 67:425–436

    PubMed  Google Scholar 

  • Smith AC, Buchanan-Smith HM, Surridge AK et al (2003) The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). J Exp Biol 206:3159–3165

    PubMed  Google Scholar 

  • Smith AC, Buchanan-Smith HM, Surridge AK et al (2005) Factors affecting group spread within wild mixed-species troops of saddleback and mustached tamarins. Int J Primatol 26:337–355

    Google Scholar 

  • Sourd C, Gautier-hion A (1986) Fruit selection by a forest guenon. J Animal Ecol 55:235–244

    Google Scholar 

  • Sumner P, Mollon JD (2000a) Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol 203:1963–1986

    PubMed  CAS  Google Scholar 

  • Sumner P, Mollon JD (2000b) Chromaticity as a signal of ripeness in fruits taken by primates. J Exp Biol 203:1987–2000

    PubMed  CAS  Google Scholar 

  • Sumner P, Mollon JD (2003) Colors of primate pelage and skin: objective assessment of conspicuousness. Am J Primatol 59:67–91

    PubMed  Google Scholar 

  • Surridge AK, Mundy NI (2002) Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates. Mol Ecol 11:2157–2169

    PubMed  CAS  Google Scholar 

  • Surridge AK, Osorio D, Mundy NI (2003) Evolution and selection of trichromatic vision in primates. Trends Ecol Evol 18:198–205

    Google Scholar 

  • Surridge AK, Suarez SS, Buchanan-Smith HM et al (2005) Color vision pigment frequencies in wild tamarins (Saguinus spp). Am J Primatol 67:463–470

    PubMed  CAS  Google Scholar 

  • Talebi MG, Pope TR, Vogel ER et al (2006) Polymorphism of visual pigment genes in the muriqui (Primates, Atelidae). Mol Ecol 15:551–558

    PubMed  CAS  Google Scholar 

  • Tamboia T, Cipollini M, Levey D (1996) An evaluation of vertebrate seed dispersal syndromes in four species of black nightshade (Solanum sect. Solanum). Oecologia 107:522–535

    Google Scholar 

  • Tan Y, Li WH (1999) Trichromatic vision in prosimians. Nature 402:36

    PubMed  CAS  Google Scholar 

  • Tan Y, Yoder AD, Yamashita N et al (2005) Evidence from opsin genes rejects nocturnality in ancestral primates. Proc Natl Acad Sci USA 102:14712–14716

    PubMed  CAS  Google Scholar 

  • Terao K, Mikami A, Saito A et al (2005) Identification of a protanomalous chimpanzee by molecular genetic and electroretinogram analyses. Vision Res 45:1225–1235

    PubMed  Google Scholar 

  • Urbani B (2002) A field observation on color selection by New World sympatric primates, Pithecia pithecia and Alouatta seniculus. Primates 43:95–101

    PubMed  Google Scholar 

  • Valenta K, Fedigan LM (2009) Effects of gut passage, feces, and seed handling on latency and rate of germination in seeds consumed by capuchins (Cebus capucinus). Am J Phys Anthropol 138:486–492

    PubMed  Google Scholar 

  • Valenta K, Melin AD Protein limitation explains variation in primate colour vision phenotypes. In: Garcia (ed.), Zoology. InTech (in press)

    Google Scholar 

  • Veilleux CC, Bolnick DA (2009) Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. Am J Primatol 71:86–90

    PubMed  CAS  Google Scholar 

  • Verrelli BC, Lewis CM Jr, Stone AC et al (2008) Different selective pressures shape the molecular evolution of color vision in chimpanzee and human populations. Mol Biol Evol 25:2735–2743

    PubMed  CAS  Google Scholar 

  • Wakefield MJ, Anderson M, Chang E et al (2008) Cone visual pigments of monotremes: filling the phylogenetic gap. Vis Neurosci 25:257–264

    PubMed  Google Scholar 

  • Willson MF, Whelan CJ (1990) The evolution of fruit color in fleshy-fruited plants. Am Nat 136:790–809

    Google Scholar 

  • Yamashita N, Stoner KE, Riba-Hernández P et al (2005) Light levels used during feeding by primate species with different color vision phenotypes. Behav Ecol Sociobiol 58:618–629

    Google Scholar 

  • Yokoyama S (2000) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385–419

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our study was supported by Grants-in-Aid for Scientific Research A 19207018 and 22247036 from the Japan Society for the Promotion of Science (JSPS) and Grants-in-Aid for Scientific Research on Priority Areas “Comparative Genomics” 20017008 and “Cellular Sensor” 21026007 from the Ministry of Education, Culture, Sports, Science and Technology of Japan to S.K; a Grant-in-Aid for JSPS Fellows (15-11926) to C.H.; post-graduate scholarships and grants from the Alberta Ingenuity Fund, the Natural Sciences and Engineering Research Council of Canada, the Leakey Foundation and the Animal Behavior Society to A.D.M; the Canada Research Chairs Program and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada to L.M.F.; the Leakey Foundation and the North of England Zoological Society to F.A.; the British Academy and the University of Chester small grants scheme to C.M.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amanda D. Melin or Shoji Kawamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melin, A.D., Hiramatsu, C., Fedigan, L.M., Schaffner, C.M., Aureli, F., Kawamura, S. (2012). Polymorphism and Adaptation of Primate Colour Vision. In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_13

Download citation

Publish with us

Policies and ethics