Skip to main content

Trends of the Herbs Ecological Evolution

  • Chapter
  • First Online:
  • 1838 Accesses

Abstract

The results of analytic research show that the evolution of leaf structure and water balance are completely coincident to global changes of planet climate and hydrology. Taxonomical diversity of herbs and herbaceous biomes is the function of paleoclimate variability and plant adaptogenesis to it. Two global trends of ecological evolution contrast differing by the composition of herbaceous adaptive types is the next: (a) the line of herbs of chilling plains with domination the group of plant species with C3 apoplastic syndrome formed under cold climate influence, and (b) the line of herbs of hot plains with domination of plant species with C4 apoplastic syndrome. Both trends include the monocots and dicots, and both are the results of climate changes in Cenozoic. C3 herbs of chilling plains and the steppe and meadow phytocoenosis formed by them arise as the answer to temperature decrease in great areas of high latitudes. The apoplastic syndrome (transfer from symplastic transport of assimilates suppressed by cold to their apoplastic transport) is the diagnostic test for this group of herbs. C4 herbs of hot plains and the savanna, desert and solontchak plant vegetation are the adaptive answer to aridization of low latitude areas. C4 syndrome (compensation of stomata closure by the mechanism of CO2 concentration in the leaf tissues) is a special sign of this group of herbs. Both types of herbaceous biomes come to change forest biomes which were strongly decreased in both areas, at low and high latitudes. This tendency is continued in parallels with climate tendency to continent desiccation and cooling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akhmetiev MA (2004) Globe climate in Palaeocene and Eocene according to data of paleobotany. In: Semikhatov MA, Chumakov NM (eds) Climate in the epochs of major biosphere transformations. Nauka, Moscow, pp 10–43 (In Russian)

    Google Scholar 

  • Allaby M (2006) Biomes of the world: grasslands. Chelsea House, New York

    Google Scholar 

  • Anderson RC (2006) Evolution and origin of the Central Grassland of North America: climate, fire, and mammalian grazers. J Torrey Bot Soc 133(4):626–647

    Google Scholar 

  • Axelrod DI (1985) Rise of the grassland biome, Central North America. Bot Rev 51(2):163–201

    Google Scholar 

  • Beerling DJ, Royer DL (2002) Fossil plants as indicators of the phanerozoic global carbon cycle. Annu Rev Earth Planet Sci 30:527–556

    CAS  Google Scholar 

  • Beerling DJ, Woodward FI (2001) Vegetation and the terrestrial carbon cycle: modelling the first 400 million years. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Benton MJ (1993) The fossil record 2. Chapman & Hall, London

    Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Amer J Sci 301(2):182–204

    CAS  Google Scholar 

  • Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geoch et Cosmoch Acta 70(23):5653–5666

    CAS  Google Scholar 

  • Bobe R (2006) The evolution of arid ecosystems in eastern Africa. J Arid Environ 66(3):564–584

    Google Scholar 

  • Bobe R, Behrensmeyer AK (2004) The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeogr Palaeoclimatol Palaeoecol 207(3–4):399–420

    Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165(2):525–538

    PubMed  CAS  Google Scholar 

  • Bredenkamp GJ, Spada F, Kazmierczak E (2002) On the origin of northern and southern hemisphere grasslands. Plant Ecol 163(2):209–229

    Google Scholar 

  • Briggs DEG, Crowther PR (eds) (1997) Palaeobiology: a synthesis. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Cerling TE, Ehleringer JR, Harris JM (1998) Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Phil Trans R Soc Lond B Biol Sci 353(1365):159–171

    CAS  Google Scholar 

  • Cerling TE, Harris JM, Leakey MG (2005) Environmentally driven dietary adaptations in African mammals. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Ecological studies 177, Springer, New York, 258–272

    Google Scholar 

  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389(6647):153–158

    CAS  Google Scholar 

  • Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361(6410):344–345

    Google Scholar 

  • Chumakov NM (1993) Problems of paleoclimate in investigations of biosphere evolution. In: Rozanov AYu (ed) Problems of biosphere evolution before anthropogenic, Nauka, Moscow, pp 106–122 (In Russian)

    Google Scholar 

  • Chumakov NM (1997) Warm biosphere. Nature 5:66–78 (In Russian)

    Google Scholar 

  • Chumakov NM (2004a) The general review of late Mesozoic climate and events. In: Semikhatov MA, Chumakov NM (eds) Climate in the epochs of major biosphere transformations. Nauka, Moscow, pp 44–51 (In Russian)

    Google Scholar 

  • Chumakov NM (2004b) Climate zonality and climate of the Cretaceous. In: Semikhatov MA, Chumakov NM (eds) Climate in the epochs of major biosphere transformations. Nauka, Moscow, pp 105–123 (In Russian)

    Google Scholar 

  • Coppens Y, Pickford M (2002) Early Miocene grassland ecosystem at Bukwa, Mount Elgon. Uganda Comptes Rendus Palevol 1(4):213–219

    Google Scholar 

  • Culver SJ, Rawson PF (eds) (2000) Biotic response to global change: the last 145 million years. Cambridge Univ Press, Cambridge

    Google Scholar 

  • DeConto RM, Pollard D (2003a) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421(6920):245–249

    PubMed  CAS  Google Scholar 

  • DeConto RM, Pollard D (2003b) A coupled climate-ice sheet modeling approach to the early Cenozoic history of the Antarctic ice sheet. Palaeogeogr Palaeoclimatol Palaeoecol 198(1–2):39–52

    Google Scholar 

  • Ding ZL, Yang SL (2000) C3/C4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau: evidence from pedogenic carbonate δ13C. Palaeogeogr Palaeoclimatol Palaeoecol 160(3):291–299

    Google Scholar 

  • Dugas DP, Retallack GJ (1993) Middle Miocene fossil grasses from Fort Ternan. Kenya J Paleont 67(1):113–128

    Google Scholar 

  • Ehleringer JR (2005) The influence of atmospheric CO2, temperature, and water on the abundance of C3/C4 taxa. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Ecological studies 177, Springer, New York, pp 214–231

    Google Scholar 

  • Ehleringer JR, Cerling TE, Dearing MD (2002) Atmospheric CO2 as a global change driver influencing plant-animal interactions. Integr Comp Biol 42(3):424–430

    PubMed  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112(3):285–299

    Google Scholar 

  • Eldrett JS, Harding IC, Wilson PA, Butler E, Roberts AP (2007) Continental ice in Greenland during the Eocene and Oligocene. Nature 446(7132):176–179

    PubMed  CAS  Google Scholar 

  • Fox DL, Koch PL (2003) Tertiary history of C4 biomass in the great plains. USA Geology 31(9):809–812

    CAS  Google Scholar 

  • Fox DL, Koch PL (2004) Carbon and oxygen isotopic variability in Neogene paleosol carbonates: constraints on the evolution of the C4-grasslands of the great plains, USA. Palaeogeogr Palaeoclimatol Palaeoecol 207(3–4):305–329

    Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (2005) Climate modes of the Phanerozoic: The history of the Earth’s climate over the past 600 million years. Cambridge Univ Press, New York

    Google Scholar 

  • Gamalei YuV (1988) Structure of plants of Trans-Altai Gobi. In: Gamalei YuV et al (eds) Deserts of Trans-Altai Gobi. Nauka, Leningrad, pp 44–107 (In Russian)

    Google Scholar 

  • Gamalei YuV (2000) Structural-functional variety of species−a basis of a variety of floras and vegetation types. In: Yurtsev BA (ed) Comparative floristics on a boundary of III millennium. Komarov Botanical Institute, St Petersburg, pp 350–374 (In Russian)

    Google Scholar 

  • Gamalei YuV (2004) Transport system of vascular plants. St. Petersburg Univ. Press, St. Petersburg, p 422 (In Russian)

    Google Scholar 

  • Gamalei YuV, Glagoleva TA, Kolchevsky KG, Chulanovskaya MV (1992) Ecology and evolution of types of C4 syndrome in connection with phylogeny of families Chenopodiaceae and Poaceae. Bot J 77(2):1–12 (In Russian)

    Google Scholar 

  • Gamalei YuV, Pakhomova MV, Sheremet’ev SN (2008) Dicotyledonous of Cretaceous, Paleogene, and Neogene. Adaptogenesis of the terminal phloem. J Gen Biol 69(3):220–237 (In Russian)

    Google Scholar 

  • Gibbs MT, Bluth GJS, Fawcett PJ, Kump LP (1999) Global chemical erosion over the last 250 My: variations due to changes in paleogeography, paleoclimate, and paleogeology. Amer J Sci 299(7–9):611–651

    CAS  Google Scholar 

  • Hansen KW, Wallmann K (2003) Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: a model perspective. Amer J Sci 303(2):94–148

    CAS  Google Scholar 

  • Hoorn C, Ohja T, Quade J (2000) Palynological evidence for vegetation development and climatic change in the Sub-Himalayan zone (Neogene, Central Nepal). Palaeogeogr Palaeoclimatol Palaeoecol 163(3–4):133–161

    Google Scholar 

  • Jacobs BF (2004) Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Phil Trans R Soc Lond B 359(1450):1573–1583

    Google Scholar 

  • Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass dominated ecosystems. Ann Mo Bot Gard 86(2):590–643

    Google Scholar 

  • Jahren AH (2007) The Arctic forest of the middle Eocene. Annu Rev Earth Planet Sci 35:509–540

    CAS  Google Scholar 

  • Janis CM, Damuth J, Theodor JM (2000) Miocene ungulates and terrestrial primary productivity: Where have all the browsers gone? PNAS 97(14):7899–7904

    PubMed  CAS  Google Scholar 

  • Janis CM, Damuth J, Theodor JM (2004) The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American Grassland biome. Palaeogeogr Palaeoclimatol Palaeoecol 207(3–4):371–398

    Google Scholar 

  • Janis CM (2007) An evolutionary history of browsing and grazing ungulates. In: Gordon IJ, Prins HHT (eds) The Ecology of browsing and grazing. Ecological studies 195, Springer, Berlin, p 21–45

    Google Scholar 

  • Jones RN (1999) The biogeography of the grasses and lowland grasslands of South-Eastern Australia. In: Jones RN (ed) The great plains crash: proceedings of a conference on victorian lowland grasslands and grassy woodlands. Adv Nat Conserv 2:11–18

    Google Scholar 

  • Keeley JE, Rundel PW (2005) Fire and the Miocene expansion of C4 grasslands. Ecol Lett 8(7):683–690

    Google Scholar 

  • Kellogg E (1998) Phylogenetic aspects of the evolution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 411–444

    Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125(3):1198–1205

    PubMed  CAS  Google Scholar 

  • Kemp TS (2005) The origin and evolution of mammals. Oxford Univ Press, Oxford

    Google Scholar 

  • Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. J Geophys Research 82(C27):3843–3860

    Google Scholar 

  • Kidder DL, Gierlowski-Kordesch EH (2005) Impact of grassland radiation on the nonmarine silica cycle and Miocene diatomite. Palaios 20(2):198–206

    Google Scholar 

  • Koch PL (1998) Isotopic reconstruction of past continental environments. Annu Rev Earth Planet Sci 26:573–613

    CAS  Google Scholar 

  • Kovalev OV (2000) Evolution of C4 syndrome of the angiosperm’s photosynthesis. Bot J 85(11):7–20 (In Russian)

    CAS  Google Scholar 

  • Latorre C, Quade J, McIntosh WC (1997) The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas. Earth Planet Sci Lett 146(1–2):83–96

    CAS  Google Scholar 

  • Lear CH, Elderfield H, Wilson PA (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287(5451):269–272

    PubMed  CAS  Google Scholar 

  • MacFadden BJ (1997) Origin and evolution of the grazing guild in new world terrestrial mammals. Trends Ecol Evol 12(5):182–187

    PubMed  CAS  Google Scholar 

  • MacFadden BJ (2000) Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annu Rev Ecol Syst 31:33–59

    Google Scholar 

  • MacFadden BJ (2005) Terrestrial mammalian herbivore response to declining levels of atmospheric CO2 during the cenozoic: evidence from North American fossil horses (family Equidae). In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Ecological studies 177, Springer, New York, pp 273–292

    Google Scholar 

  • MacFadden BJ, Cerling TE (1994) Fossil horses, carbon isotopes and global change. Trends Ecol Evol 9(12):481–486

    PubMed  CAS  Google Scholar 

  • MacFadden BJ, Cerling TE, Prado J (1996) Cenozoic terrestrial ecosystem evolution in Argentina: evidence from carbon isotopes of fossil mammal teeth. Palaios 11(4):319–327

    Google Scholar 

  • Martínez-Millán M (2010) Fossil record and age of the Asteridae. Bot Rev 76(1):83–135

    Google Scholar 

  • Merceron G, Blondel C, Brunet M et al (2004) The late Miocene paleoenvironment of Afghanistan as inferred from dental microwear in artiodactyls. Palaeogeogr Palaeoclimatol Palaeoecol 207(1–2):143–163

    Google Scholar 

  • Middleton N, Thomas D (1997) World atlas of desertification, 2nd edn. Arnold, London 182 p

    Google Scholar 

  • Miller KG, Kominz MA, Browning JV et al (2005) The Phanerozoic record of global sea-level change. Science 310(5752):1293–1298

    PubMed  CAS  Google Scholar 

  • Moran K, Backman J, Brinkhuis H et al (2006) The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441(7093):601–605

    PubMed  CAS  Google Scholar 

  • Morgan ME, Kingston JD, Marino BD (1994) Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature 367(6459):162–165

    CAS  Google Scholar 

  • Morley RJ (2007) Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In: Bush MB, Flenley JR (eds) Tropical rainforest responses to climatic change. Springer, Berlin, pp 1–31

    Google Scholar 

  • Mosbrugger V, Utescher T, Dilcher DL (2005) Cenozoic continental climatic evolution of Central Europe. PNAS 102(42):14964–14969

    PubMed  CAS  Google Scholar 

  • Muller J (1981) Fossil pollen record of extant angiosperms. Bot Rev 47(1):1–142

    Google Scholar 

  • Nikolaev SD, Oskina NS, Blyum NS, Bubenshchikova NV (1998) Neogene–Quaternary variations of the ‘Pole–Equator’ temperature gradient of the surface oceanic waters in the North Atlantic and North Pacific. Glob Planet Change 18(3–4):85–111

    Google Scholar 

  • Ogg JG, Ogg G, Gradstein FM (2008) The concise geologic time scale. Cambridge Univ Press, New York

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933–938

    Google Scholar 

  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309(5734):600–603

    PubMed  CAS  Google Scholar 

  • Pearson PN, van Dongen BE, Nicholas CJ et al (2007) Stable warm tropical climate through the Eocene epoch. Geology 35(3):211–214

    Google Scholar 

  • Pollard D, DeConto RM (2003) Antarctic ice and sediment flux in the Oligocene simulated by a climate-ice sheet-sediment model. Palaeogeogr Palaeoclimatol Palaeoecol 198(1–2):53–67

    Google Scholar 

  • Pollard D, DeConto RM (2005) Hysteresis in Cenozoic Antarctic ice-sheet variations. Glob Planet Change 45(1–3):9–21

    Google Scholar 

  • Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342(6246):163–166

    Google Scholar 

  • Retallack GJ (1992) Middle Miocene fossil plants from Fort Ternan (Kenya) and evolution of African grasslands. Paleobiology 18(4):383–400

    Google Scholar 

  • Retallack GJ (1997) Neogene expansion of the North American prairie. Palaios 12(4):380–390

    Google Scholar 

  • Retallack GJ (1998) Grassland ecosystems as a biological force in dusty dry regions. Busacca AJ (ed) Dust aerosols. Loess soils and global change (Conference proceedings, Seattle), Washington State University, College of Agriculture and Home Economics, Pullman, Washington, pp 171–174

    Google Scholar 

  • Retallack GJ (2001) Cenozoic expansion of grasslands and climatic cooling. J Geology 109(4):407–426

    CAS  Google Scholar 

  • Retallack GJ (2004) Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, USA. Palaeogeogr Palaeoclimatol Palaeoecol 207(3–4):203–237

    Google Scholar 

  • Retallack GJ, Dugas DP, Bestland EA (1990) Fossil soils and grasses of a middle Miocene East African grassland. Science 247(4948):1325–1328

    PubMed  CAS  Google Scholar 

  • Retallack GJ, Tanaka S, Tate T (2002) Late Miocene advent of tall grassland paleosols in Oregon. Palaeogeogr Palaeoclimatol Palaeoecol 183(3–4):329–354

    Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70(23):5665–5675

    CAS  Google Scholar 

  • Sage RF (2003) The evolution of C4 photosynthesis. New Phytol 161(2):341–370

    Google Scholar 

  • Sage RF (2005) Atmospheric CO2, environmental stress, and the evolution of C4 photosynthesis. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Ecological studies 177, Springer, New York, pp 185–213

    Google Scholar 

  • Scotese CR (2003) PALEOMAP Project. (http://www.scotese.com)

  • Ségalen L, Renard M, Lee-Thorp JA et al (2006) Neogene climate change and emergence of C4 grasses in the Namib, southwestern Africa, as reflected in ratite 13C and 18O. Earth Planet Sci Lett 244(3–4):725–734

    Google Scholar 

  • Semikhatov MA, Chumakov NM (eds) (2004) Climate in the epoches of major biospheric transformations (transactions of the Geological Institute of the Russian Academy of Sciences, issue 550). Nauka, Moscow, p 299 (in Russian)

    Google Scholar 

  • Sheremet’ev SN (2005) Herbs on the soil moisture gradient (water relations and the structural-functional organization). KMK, Moscow, p 271 (In Russian)

    Google Scholar 

  • Shevenell AE, Kennett JP, Lea DW (2004) Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305(5691):1766–1770

    PubMed  CAS  Google Scholar 

  • Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16(8):399–447

    Google Scholar 

  • Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C3 and C4 vegetation: carbon cycle implications. Glob Biogeochem Cycles 17(1):6.1–6.14

    Google Scholar 

  • Strömberg CAE (2002) The origin and spread of grass-dominated ecosystems in the late tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeogr Palaeoclimatol Palaeoecol 177(1–2):59–75

    Google Scholar 

  • Strömberg CAE (2004) Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 207(3–4):239–275

    Google Scholar 

  • Strömberg CAE (2005) Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. PNAS 102(34):11980–11984

    PubMed  Google Scholar 

  • Strömberg CAE (2006) Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32(2):236–258

    Google Scholar 

  • Strömberg CAE, Werdelin L, Friis EM, Saraç G (2007) The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: Phytolith evidence. Palaeogeogr Palaeoclimatol Palaeoecol 250(1–4):18–49

    Google Scholar 

  • Tajika E (1999) Carbon cycle and climate change during the Cretaceous inferred from a biogeochemical carbon cycle model. Island Arc 8(2):293–303

    CAS  Google Scholar 

  • Tipple BJ, Pagani M (2007) The early origins of terrestrial C4 photosynthesis. Annu Rev Earth Planet Sci 35:435–461

    CAS  Google Scholar 

  • Traverse A (2007) Paleopalynology. Springer, Dordrecht 813 p

    Google Scholar 

  • Tripati A, Backman J, Elderfield H, Ferretti P (2005) Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436(7049):341–346

    PubMed  CAS  Google Scholar 

  • Vasilevskaya VK (1979) Development of ecological anatomy in the USSR. Bot J 64(5):654–664 (In Russian)

    Google Scholar 

  • Veizer J, Ala D, Azmy K et al (1999) 87Sr/86Sr, δ18O and δ13C evolution of phanerozoic seawater. Chem Geol 161(1–3):59–88 (web update 2004). (http://www.science.uottawa.ca/-geology/isotope_data)

    Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Chuong SDX, Edwards GE (2006) Functional characterization of phosphoenolpyruvate carboxykinase-type C4 leaf anatomy: immuno-, cytochemical and ultrastructural analyses. Ann Bot 98(1):77–91

    PubMed  CAS  Google Scholar 

  • Wallmann K (2004) Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine δ18O record. Geochem Geophys Geosyst 5(6):1–29

    Google Scholar 

  • Walter H (1985) Vegetation of the earth and ecological systems of the geo-biosphere (3rd edition)., 3rd edn. Springer-Verlag, New York pp 318

    Google Scholar 

  • Wang L, Lü HY, Wu NQ et al (2006) Palynological evidence for late Miocene–Pliocene vegetation evolution recorded in the red clay sequence of the central Chinese Loess Plateau and implication for palaeoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol 241(1):118–128

    Google Scholar 

  • Wang Y, Cerling TE, MacFadden BJ (1994) Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeogr Palaeoclimatol Palaeoecol 107(3–4):269–279

    Google Scholar 

  • Wang Y, Deng T (2005) A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau. Earth Planet Sci Lett 236(1–2):322–338

    CAS  Google Scholar 

  • Willis KJ, McElwain JC (2002) The evolution of plants. Oxford Univ Press, Oxford 378 p

    Google Scholar 

  • Woodward FI, Lomas MR, Kelly CK (2004) Global climate and the distribution of plant biomes. Phil Trans R Soc Lond B 359(1450):1465–1476

    CAS  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 ma to present. Science 292(5517):686–693

    PubMed  CAS  Google Scholar 

  • Zharkov MA, Murdmaa IO, Filatova NI (2004) Paleogeographical reorganizations and sedimentation of the cretaceous period. In: Semikhatov MA, Chumakov NM (eds) Climate in the epochs of major biosphere transformations. Nauka, Moscow, pp 52–87 (In Russian)

    Google Scholar 

  • Zherikhin VV (1994) Genesis of herbs biomes. In: Rozanov AYu, Semikhatov MA (eds) Ecosystems reorganizations and biosphere evolution, issue 1, Nedra, Moscow, pp 132–137 (In Russian)

    Google Scholar 

  • Zhisheng A, Yongsong H, Welguo L et al (2005) Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation. Geology 33(9):705–708

    Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by a grant from the Russian Foundation for Basic Research (10-04-01165-a). We would like to thank Pierre Pontarotti and Marie-Hélène Rome for the invitation to contribute to the 15th evolutionary biology meeting at Marseille where this work was presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei N. Sheremet’ev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sheremet’ev, S.N., Gamalei, Y.V. (2012). Trends of the Herbs Ecological Evolution. In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_11

Download citation

Publish with us

Policies and ethics