Skip to main content

Parameter Estimation in Image Processing and Computer Vision

  • Chapter
  • First Online:

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 4))

Abstract

Parameter estimation plays a dominant role in a wide number of image processing and computer vision tasks. In these settings, parameterizations can be as diverse as the application areas. Examples of such parameters are the entries of filter kernels optimized for a certain criterion, image features such as the velocity field, or part descriptors or compositions thereof. Subsequently, approaches for estimating these parameters encompass a wide range of techniques, often tuned to the application, the underlying data and viable assumptions. Here, an overview of parameter estimation in image processing and computer vision will be given. Due to the wide and diverse areas in which parameter estimation is applicable, this review does not claim completeness. Based on selected key topics in image processing and computer vision we will discuss parameter estimation, its relevance, and give an overview over the techniques involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2(2):284–299

    Article  Google Scholar 

  2. Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11):1475–1490

    Article  Google Scholar 

  3. Ambrosio L, Masnou S (2003) A direct variational approach to a problem arising in image reconstruction. Interfaces and Free Boundaries 5:63–81

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio L, Masnou S (2003) A direct variational approach to a problem arising in image reconstruction. Interfaces Free Bound 5(1):63–81

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. Boll Un Mat Ital B 6(7):105–123

    MathSciNet  MATH  Google Scholar 

  6. Amit Y, Geman D (1998) A computational model for visual selection. Neural Computation 11(7):1691–1715

    Article  Google Scholar 

  7. Anandan P (1989) A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2:283–319

    Article  Google Scholar 

  8. Attneave F (1954) Some informational aspects of visual perception. Psychological Review 61(3):183–193

    Article  Google Scholar 

  9. Ballester C, Bertalmio M, Caselles V, Sapiro G, Verdera J (2001) Filling-in by joint interpolation of vector fields and gray levels. IEEE Transactions on Image Processing 10(8):1200–1211

    Article  MathSciNet  MATH  Google Scholar 

  10. Ballester C, Caselles V, Verdera J (2003) Disocclusion by Joint Interpolation of Vector Fields and Gray Levels. Multiscale Modeling & Simulation 2(1):80, DOI 10.1137/S1540345903422458

    Article  MathSciNet  Google Scholar 

  11. Barron JL, Fleet DJ, Beauchemin S (1994) Performance of optical flow techniques. International Journal of Computer Vision 12(1):43–77

    Article  Google Scholar 

  12. Beauchemin SS, Barron JL (1995) The computation of optical flow. ACM Computing Surveys 27(3):433–467

    Article  Google Scholar 

  13. Bellettini G, Dal Maso G, Paolini M (1993) Semicontinuity and relaxation properties of a curvature depending functional in 2d. Ann Scuola Norm Sup Pisa Cl Sci 20:247–297

    MathSciNet  MATH  Google Scholar 

  14. Berg AC, Berg TL, Malik J (2005) Shape matching and object recognition using low distortion correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 26–33

    Google Scholar 

  15. Berkels B, Kondermann C, Garbe C, Rumpf M (2009) Reconstructing optical flow fields by motion inpainting. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer Verlag, vol LNCS 5681, pp 388–400, DOI 10.1007/978-3-642-03641-5∖_29

    Article  Google Scholar 

  16. Bertalmio M, Sapiro G, Caselles V, Ballester C (2000) Image inpainting. In: Computer Graphics (SIGGRAPH ’00 Proceedings), pp 417–424

    Google Scholar 

  17. Bertalmio M, Sapiro G, Randall G (2000) Morphing active contours. PAMI 22(7):733–743

    Article  Google Scholar 

  18. Bertalmio M, Bertozzi A, Sapiro G (2001) Navier-Stokes, fluid dynamics, and image and video inpainting. Proceedings of the International Conference on Computer Vision and Pattern Recognition, IEEE I:355–362

    Google Scholar 

  19. Bertalmio M, Vese L, Sapiro G, Osher S (2003) Simultaneous structure and texture image inpainting. IEEE Transactions on Image Processing 12(8):882–889, DOI 10.1109/TIP.2003.815261

    Article  Google Scholar 

  20. Biederman I (1987) Recognition-by-components: A theory of human image understanding. Psychological Review 94(2):115–147

    Article  Google Scholar 

  21. Bigün J (1988) Local symmetry features in image processing. PhD thesis, Linköping University, Linköping, Sweden

    Google Scholar 

  22. Borenstein E, Sharon E, Ullman S (2004) Combining top-down and bottom-up segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop Percept Org in Comp Vision

    Google Scholar 

  23. Bouchard G, Triggs B (2005) Hierarchical part-based visual object categorization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 710–715

    Google Scholar 

  24. Bredies K, Kunisch K, Pock T (2010) Total generalized variation. Siam Journal On Imaging Sciences 3(3):492, DOI 10.1137/090769521

    Article  MathSciNet  MATH  Google Scholar 

  25. Bruhn A, Weickert J, Feddern C, Kohlberger T, Schnörr C (2003) Real-time optic flow computation with variational methods. In: Petkov N, Westenberg M (eds) Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, vol 2756, Springer Berlin/Heidelberg, pp 222–229

    Google Scholar 

  26. Bruhn A, Weickert J, Schnörr C (2005) LucasKanade meets HornSchunck: Combining local and global optic flow methods. Int J Computer Vision 61(3):211–231

    Article  Google Scholar 

  27. Bruhn A, Weickert J, Kohlberger T, Schnörr C (2006) A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision 70(3):257–277

    Article  Google Scholar 

  28. Burt PJ, Adelson EH (1983) The laplacian pyramid as a compact image code. IEEE TransCOMM 31:532–540

    Article  Google Scholar 

  29. Caselles V, Morel JM, Sbert C (1998) An axiomatic approach to image interpolation. Image Processing, IEEE Transactions on 7(3):376–386, DOI 10.1109/83.661188

    Article  MathSciNet  MATH  Google Scholar 

  30. Chan T, Shen J (2001) Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics 62(3):1019–1043, DOI 10.1137/S0036139900368844

    MathSciNet  Google Scholar 

  31. Chan T, Shen J (2001) Non-texture inpainting by curvature-driven diffusions (ccd). J Visual Comm Image Rep 12:436–449

    Article  Google Scholar 

  32. Chan T, Shen J (2002) Mathematical models for local non-texture inpaintings. SIAM J Appl Math 62:1019–1043

    Article  MathSciNet  MATH  Google Scholar 

  33. Chan TF, Tai XC (2003) Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. Journal of Computational Physics 193(1):40–66, DOI 10.1016/j.jcp.2003.08.003

    Article  MathSciNet  Google Scholar 

  34. Chan TF, Osher S, Shen J (2001) The digital tv filter and nonlinear denoising. IEEE Transactions on Image Processing 10(2):231–241

    Article  MATH  Google Scholar 

  35. Chan TF, Kang SH, Shen J (2002) Euler’s elastica and curvature-based inpainting. SIAM Appl Math 63(2):564–592

    MathSciNet  MATH  Google Scholar 

  36. Cohen I (93) Nonlinear variational method for optical flow computation. In: Proc. of the Eighth Scandinavian Conference on Image Analysis, vol 1, pp 523–530

    Google Scholar 

  37. Cremers D, Schnörr C (2002) Motion competition: Variational integration of motion segmentation and shape regularization. In: Van Gool L (ed) Pattern Recognition - Proc. of the DAGM, Lecture Notes in Computer Science, vol 2449, pp 472–480

    Google Scholar 

  38. Cremers D, Schnörr C (2003) Statistical shape knowledge in variational motion segmentation. Image and Vision Computing 21:77–86

    Article  Google Scholar 

  39. Cremers D, Soatto S (2005) Motion competition: A variational approach to piecewise parametric motion segmentation. International Journal of Computer Vision 62:249–265

    Article  Google Scholar 

  40. Criminisi A, Pérez P, Toyama K (2004) Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing 13(9):1200–1212, DOI 10.1109/TIP.2004.833105

    Article  Google Scholar 

  41. Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: ECCV, Workshop on Stat Learn in CV’04

    Google Scholar 

  42. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR, pp 886–893

    Google Scholar 

  43. Epshtein B, Ullman S (2005) Feature hierarchies for object classification. In: ICCV, pp 220–227

    Google Scholar 

  44. Esedoglu S, Jianhong S (2002) Digital inpainting based on the Mumford-Shah-Euler image model. Euro Jnl Appl Math 13:353–370

    MATH  Google Scholar 

  45. Felzenszwalb PF, Huttenlocher DP (2005) Pictorial structures for object recognition. IJCV 61(1):55–79

    Article  Google Scholar 

  46. Fennema C, Thompson W (1979) Velocity determination in scenes containing several moving objects. Computer Graphics and Image Processing 9:301–315

    Article  Google Scholar 

  47. Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: CVPR, pp 264–271

    Google Scholar 

  48. Ferrari V, Fevrier L, Jurie F, Schmid C (2008) Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(1): 36–51

    Article  Google Scholar 

  49. Fischler MA, Elschlager RA (1973) The representation and matching of pictorial structures. IEEE Transactions on Computers c-22(1):67–92

    Google Scholar 

  50. Fleet DJ (1992) Measurement of Image Velocity. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Book  MATH  Google Scholar 

  51. Fleet DJ, Jepson AD (1990) Computation of component image velocity from local phase information. International Journal of Computer Vision 5:77–104

    Article  Google Scholar 

  52. Fukushima K (1980) Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4):193–202

    Article  MATH  Google Scholar 

  53. Galvin B, McCane B, Novins K, Mason D, Mills S (1998) Recovering motion fields: an evaluation of eight optical flow algorithms. In: BMVC 98. Proceedings of the Ninth British Machine Vision Conference, vol 1, pp 195–204

    Google Scholar 

  54. Geman S, Potter DF, Chi Z (2002) Composition Systems. Quarterly of Applied Mathematics 60:707–736

    MathSciNet  MATH  Google Scholar 

  55. Glazer F, Reynolds G, Anandan P (1983) Scene matching through hierarchical correlation. In: Proc. Conference on Computer Vision and Pattern Recognition, Washington, pp 432–441

    Google Scholar 

  56. Grauman K, Darrell T (2006) Pyramid match kernels: Discriminative classification with sets of image features. Tech. Rep. MIT-2006-020, MIT

    Google Scholar 

  57. Grimson W, Huttenlocher D (1990) On the sensitivity of the hough transform for object recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on 12(3):255 –274, DOI 10.1109/34. 49052

    Article  Google Scholar 

  58. Grossauer H (2004) A combined pde and texture synthesis approach to inpainting. In: Pajdla T, Matas J (eds) Computer Vision - ECCV 2004, Lecture Notes in Computer Science, vol 3022, Springer-Verlag, pp 214–224, DOI 10.1007/978-3-540-24671-8∖_17

    Google Scholar 

  59. Guichard F (1998) A morphological, affine, and galilean invariant scale–space for movies. IEEE Transactions on Image Processing 7(3):444–456

    Article  Google Scholar 

  60. Haußecker H, Spies H (1999) Motion. In: Jähne B, Haußecker H, Geißler P (eds) Handbook of Computer Vision and Applications, vol 2, Academic Press, chap 13

    Google Scholar 

  61. Heeger D (1987) Model for the extraction of image flow. Journal of the Optical Society of America 4(8):1455–1471

    Article  Google Scholar 

  62. Heeger DJ (1988) Optical flow using spatiotemporal filters. International Journal of Computer Vision 1:279–302

    Article  Google Scholar 

  63. Hinterberger W, Scherzer O, Schnörr C, Weickert J (2001) Analysis of optical flow models in the framework of calculus of variations. Tech. rep., Numerical Functional Analysis and Optimization, Revised version of Technical Report No. 8/2001, Computer Science Series, University of Mannheim, Germany

    Google Scholar 

  64. Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42(1):177–196

    Article  MATH  Google Scholar 

  65. Horn B, Schunk B (1981) Determining optical flow. Artificial Intelligence 17:185–204

    Article  Google Scholar 

  66. Hough P (1962) Method and means for recognizing complex patterns. U.S. Patent 3069654

    Google Scholar 

  67. Jin Y, Geman S (2006) Context and hierarchy in a probabilistic image model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2145–2152

    Google Scholar 

  68. Kass M, Witkin A, Terzopoulos D (1987) Snakes: Active contour models. In: ICCV87, pp 259–268

    Google Scholar 

  69. Kondermann C, Kondermann D, Jähne B, CS Garbe} (2007) An adaptive confidence measure for optical flows based on linear subspace projections. In: Hamprecht F, Schnörr C, Jähne B (eds) Pattern Recognition, Springer Verlag, vol LNCS 4713, pp 132–141, DOI 10. 1007/978-3-540-74936-3∖_14

    Google Scholar 

  70. Kondermann C, Mester R, Garbe C (2008) A statistical confidence measure for optical flows. In: Forsyth D, Torr P, Zisserman A (eds) Computer Vision - ECCV 2008, Springer Verlag, vol LNCS 5304, pp 290–301, DOI 10.1007/978-3-540-88690-7∖_22

    Google Scholar 

  71. Lades M, Vorbrüggen JC, Buhmann JM, Lange J, von der Malsburg C, Würtz RP, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers 42:300–311

    Article  Google Scholar 

  72. Lai S, Vemuri B (1995) Robust and efficient algorithms for optical flow computation. In: Proc. of Int. Symp. Comp. Vis., pp 455–460

    Google Scholar 

  73. Laine A, Fan J (1996) Frame representations for texture segmentation. IEEE Transactions on Image Processing 5(5):771–780, URL citeseer.ist.psu.edu/article/laine96frame.html

    Google Scholar 

  74. Lampert CH, Blaschko MB, Hofmann T (2008) Beyond sliding windows: Object localization by efficient subwindow search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

    Google Scholar 

  75. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

    Google Scholar 

  76. Lefébure M, Cohen LD (2001) Image registration, optical flow and local rigidity. Journal of Mathematical Imaging and Vision 14:131–147

    Article  MathSciNet  MATH  Google Scholar 

  77. Leibe B, Leonardis A, Schiele B (2004) Combined object categorization and segmentation with an implicit shape model. In: ECCV, Workshop Stat Learn’04

    Google Scholar 

  78. Lenzen F, Schäfer H, CS Garbe (2011) Denoising Time-of-Flight data with adaptive total variation. In: Bebis G, Boyle R, Koracin D, Parvin B (eds) Advances in Visual Computing, ISVC 2011, vol LNCS 6938, pp 337–346, DOI 10.1007/978-3-642-24028-7∖_31

    Google Scholar 

  79. Liapis, S S, Tziritas, G (2004) Colour and texture segmentation using wavelet frame analysis, deterministic relaxation, and fast marching algorithms. Journal of Visual Communication and Image Representation 15:1–26

    Article  Google Scholar 

  80. Little JJ, Verri A (1989) Analysis of differential and matching methods for optical flow. In: IEEE Workshop on Visual Motion, Irvine, CA, pp 173–180

    Google Scholar 

  81. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2):91–110

    Article  Google Scholar 

  82. Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: DARPA Image Understanding Workshop, pp 121–130

    Google Scholar 

  83. Lucas BD (1984) Generalized image matching by the method of differences. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA

    Google Scholar 

  84. Luis Alvarez JS Joachim Weickert (1999) A scale-space approach to nonlocal optical flow calculations. Proceedings of the Second International Conference on Scale-Space Theories in Computer Vision pp 235–246

    Google Scholar 

  85. Maji S, Malik J (2009) Object detection using a max-margin hough transform. In: CVPR

    Google Scholar 

  86. Masnou S (2002) Disocclusion: A variational approach using level lines. IEEE Transactions on Image Processing 11(2):68–76

    Article  MathSciNet  Google Scholar 

  87. Masnou S, Morel J (1998) Level lines based disocclusion. In: Proc. of ICIP, vol 3, pp 259–263

    Google Scholar 

  88. Masnou S, Morel JM (1998) Level lines based disocclusion. In: 5th IEEE International Conference on Image Processing (ICIP), Chicago, vol 3, pp 259–263

    Google Scholar 

  89. Matsushita Y, Ofek E, Ge W, Tang X, Shum HY (2006) Full-frame video stabilization with motion inpainting. Pattern Analysis and Machine Intelligence, IEEE Transactions on 28(7):1150–1163, DOI 10. 1109/TPAMI.2006.141

    Article  Google Scholar 

  90. McCane B, Novins K, Crannitch D, Galvin B (2001) On benchmarking optical flow. Computer Vision and Image Understanding 84(1):126–143

    Article  MATH  Google Scholar 

  91. Mumford D, Shah J (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42:577–685

    Article  MathSciNet  MATH  Google Scholar 

  92. Müller-Urbaniak S (1994) Eine Analyse des Zweischritt-[Theta]-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen. Tech. rep.

    Google Scholar 

  93. Nagel HH (1983) Displacement vectors derived from second-order intensity variations in image sequences. Computer Graphics and Image Processing 21:85–117

    Article  Google Scholar 

  94. Nagel HH, Enkelmann W (1986) An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans Pattern Anal Mach Intell 8(5):565–593

    Article  Google Scholar 

  95. Nicolescu,M, Medioni,G (2002) 4d voting for matching, densification and segmentation into motion layers. In: Proceedings of the International Conference on Pattern Recognition, vol 3

    Google Scholar 

  96. Nicolescu,M, Medioni,G (2003) Layered 4d representation and voting for grouping from motion. Pattern Analysis and Machine Intelligence 25(4):492–501

    Article  Google Scholar 

  97. Ommer B, Buhmann J (2010) Learning the compositional nature of visual object categories for recognition. PAMI 32(3):501–516

    Article  Google Scholar 

  98. Ommer B, Buhmann JM (2005) Object categorization by compositional graphical models. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, LNCS 3757, pp 235–250

    Article  Google Scholar 

  99. Ommer B, Buhmann JM (2006) Learning compositional categorization models. In: ECCV, pp 316–329

    Google Scholar 

  100. Ommer B, Malik J (2009) Multi-scale object detection by clustering lines. In: Computer Vision, 2009 IEEE 12th International Conference on, pp 484 –491, DOI 10.1109/ICCV.2009.5459200

    Google Scholar 

  101. Ommer B, Sauter M, Buhmann JM (2006) Learning top-down grouping of compositional hierarchies for recognition. In: CVPR, Workshop POCV

    Google Scholar 

  102. Opelt A, Pinz A, Zisserman A (2006) Incremental learning of object detectors using a visual shape alphabet. In: CVPR, pp 3–10

    Google Scholar 

  103. Oppenheim AV, Schafer RW (2009) Discrete-Time Signal Processing, 3rd edn. Prentice Hall

    Google Scholar 

  104. Petrovic,A E, Vanderheynst,P (2004) Multiresolution segmentation of natural images: From linear to nonlinear scale-space representation. IEEE Transactions on Image Processing 13(8):1104–1114

    Article  Google Scholar 

  105. Pietikäinen M, Rosenfeld A (1981) Image segmentation by texture using pyramid node linking. Systems, Man and Cybernetics, IEEE Transactions on 11(12):822–825, DOI 10.1109/TSMC.1981.4308623

    Article  Google Scholar 

  106. Preußer, Droske M, Garbe CS, Telea A, Rumpf M (2007) A phase field method for joint denoising, edge detection and motion estimation. SIAM Appl Math, 68(3): 599–618, DOI 10.1137/060677409

    Google Scholar 

  107. Proakis JG, Manolakis DK (2006) Digital Signal Processing, 4th edn. Prentice Hall

    Google Scholar 

  108. Schnörr C (1992) Computation of discontinuous optical flow by domain decomposition and shape optimization. International Journal Computer Vision 8(2):153–165

    Article  Google Scholar 

  109. Sivic J, Russell BC, Efros AA, Zisserman A, Freeman WT (2005) Discovering objects and their localization in images. In: ICCV

    Google Scholar 

  110. Spies H, Garbe CS (2002) Dense parameter fields from total least squares. In: Van Gool L (ed) Pattern Recognition, Springer-Verlag, Zurich, CH, Lecture Notes in Computer Science, vol LNCS 2449, pp 379–386

    Google Scholar 

  111. Strehl,A, Aggarwal,JK (2000) A new Bayesian relaxation framework for the estimation and segmentation of multiple motions. In: Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI 2000), 2–4 April 2000, Austin, Texas, USA, IEEE, pp 21–25, URL citeseer.ist.psu.edu/strehl00new.html

  112. Sudderth EB, Torralba AB, Freeman WT, Willsky AS (2005) Learning hierarchical models of scenes, objects, and parts. In: ICCV

    Google Scholar 

  113. Tan L (2007) Digital Signal Processing: Fundamentals and Applications. Academic Press

    Google Scholar 

  114. Telea A, Preusser T, Garbe C, Droske M, Rumpf M (2006) A variational approach to joint denoising, edge detection and motion estimation. In: Proc. DAGM 2006, pp 525–353

    Google Scholar 

  115. Tretiak O, Pastor L (1984) Velocity estimation from image sequences with second order differential operators. In: Proc. 7th International Conference on Pattern Recognition, pp 20–22

    Google Scholar 

  116. Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Transaction on Image Processing 11:1549–1560

    Article  Google Scholar 

  117. Vidal R, Ma Y (2004) A unified algebraic approach to 2-d and 3-d motion segmentation. In: ECCV (1), pp 1–15

    Google Scholar 

  118. Viola PA, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features. In: CVPR, pp 511–518

    Google Scholar 

  119. Wang JYA, Adelson EH (1993) Layered representation for motion analysis. In: Wang JYA, Adelson EH (eds) Proceedings CVPR’93, New York City, NY, Washington, DC, pp 361–366

    Google Scholar 

  120. Wang JYA, Adelson EH (1994) Representating moving images with layers. IEEE Transaction on Image Processing 3(5):625–638

    Article  Google Scholar 

  121. Wang,JYA,Adelson,EH (1994) Representing moving images with layers. The IEEE Transactions on Image Processing Special Issue: Image Sequence Compression 3(5):625–638

    Article  Google Scholar 

  122. Waxman AM, Wu J, Bergholm F (1988) Convected activation profiles and receptive fields for real time measurement of short range visual motion. In: Proc. Conf. Comput. Vis. Patt. Recog, Ann Arbor, pp 771–723

    Google Scholar 

  123. Weickert J, Schnörr C (2001) A theoretical framework for convex regularizers in PDE–based computation of image motion. Int J Computer Vision 45(3):245–264

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph S. Garbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garbe, C.S., Ommer, B. (2013). Parameter Estimation in Image Processing and Computer Vision. In: Bock, H., Carraro, T., Jäger, W., Körkel, S., Rannacher, R., Schlöder, J. (eds) Model Based Parameter Estimation. Contributions in Mathematical and Computational Sciences, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30367-8_15

Download citation

Publish with us

Policies and ethics