Skip to main content

Sensitivity Analysis for Maxwell Eigenvalue Problems in Industrial Applications

  • Chapter
Book cover Advanced Finite Element Methods and Applications

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 66))

  • 3993 Accesses

Abstract

In this paper we focus on the sensitivity analysis of Maxwell’s eigenvalue problem, where the derivatives of the eigenvalues are calculated with respect to design parameters (i.e., material or geometrical parameters). Utilizing the adjoint approach the derivatives can be calculated at almost no additional cost. The challenge consists in the computation of the required derivatives (i.e., derivatives of bilinear forms with respect to the design parameters) from a higher order, curved finite element discretization. Numerical studies show the application for a real life electromagnetic filter application where the sensitivities of the eigenvalues give a better insight into the characteristics of the underlying filter. The benefit is apparent if the adjoint method is compared to a standard finite difference approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, M., Coyle, J.: Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Meth. Engrg. 58(14), 2103–2130 (2001)

    Article  MathSciNet  Google Scholar 

  2. Ainsworth, M., Coyle, J., Ledger, P., Morgan, K.: Computation of Maxwell eigenvalues using higher order edge elements in three dimensions. IEEE Trans. Magnet. 39(5), 2149–2153 (2003)

    Article  Google Scholar 

  3. Akel, H., Webb, J.P.: Design sensitivities for scattering matrix calculation with tetrahedral edge elements. IEEE Trans. Magnet. 36(4), 1043–1046 (2000)

    Article  Google Scholar 

  4. Albanese, R., Rubinacci, G.: Integral formulation for 3D eddy–current computation using edge elements. IEE Proc. A., 457–462 (1988)

    Google Scholar 

  5. Ali, S.M., Nikolova, N.K., Bakr, M.H.: Recent advances in sensitivity analysis with frequency–domain full–wave EM solvers. Appl. Comput. Electromagnet. Soc. J. 19(3), 147–154 (2004)

    Google Scholar 

  6. Arbenz, P., Geus, R.: A comparison of solvers for large eigenvalue problems occuring in the design of resonant cavities. Numer. Linear Alg. Appl. 6, 3–16 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  8. Bandler, J.W., Zhang, Q.J., Biernacki, R.M.: A unified theory for frequency–domain simulation and sensitivity analysis of linear and nonlinear circuits. IEEE Trans. Microwave Theory Techn. 36(12), 1661–1669 (1988)

    Article  Google Scholar 

  9. Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I.: Computational models of electromagnetic resonators: Analysis of edge element approximation. SIAM J. Numer. Anal. 36, 1264–1290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numerica 19, 1–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bossavit, A.: Computational Electromagnetism. Academic Press, Boston (1998)

    MATH  Google Scholar 

  12. Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44, 2198–2226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Costabel, M., Dauge, M.: Computation of resonance frequencies for Maxwell equations in non smooth domains. In: Ainsworth, M., Davies, P., Duncan, D., Martin, P., Rynne, B. (eds.) Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol. 31, pp. 125–161. Springer (2003)

    Google Scholar 

  14. Costabel, M., Dauge, M.: Maxwell eigenmodes in tensor product domains (2006), http://perso.univ-rennes1.fr/monique.dauge/publis/CoDa06MaxTens2.pdf

  15. Cao, Y., Reitzinger, S., Zhang, Q.J.: Simple and efficient high-dimensional parametric modeling for microwave cavity filters using modular neural network. IEEE Microwave Wireless Components Letters 21(5), 258–260 (2011)

    Article  Google Scholar 

  16. CST MICROWAVE STUDIO ®, ver. 2011, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2010), http://www.cst.com

  17. Demkowicz, L., Monk, P., Vardapetyan, L., Rachowicz, W.: De Rham diagram for hp finite element spaces. Comput. Math. Appl. 39, 29–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Demkowicz, L., Kurtz, J., Pardo, D.: Computing with hp–Adaptive Finite Elements: Frontiers: three dimensional elliptic and Maxwell problems with applications. Chapman & Hall/CRC (2007)

    Google Scholar 

  19. Graeb, H.E.: Analog Design Centering and Sizing. Springer, The Nederlands (2007)

    Google Scholar 

  20. Haase, G., Kuhn, M., Langer, U.: Parallel multigrid 3D Maxwell solvers. Parallel Comput. 27, 761–775 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hiptmair, R.: Finite elements in computational electromagnetrism. Acta Numerica 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hiptmair, R., Neymair, K.: Multilevel method for mixed eigenproblems. SIAM J. Sci. Comput. 23(6), 2141–2164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kikuchi, F.: Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. Methods Appl. Mech. Eng. 64, 509–521 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koziel, S., Mosler, F., Reitzinger, S., Thoma, P.: Robust microwave design optimization using adjoint sensitivity and trust regions. Int. J. RF Microwave Computer-Aided Engrg. (2011) (submitted)

    Google Scholar 

  26. Lee, L.-Q., Li, Z., Ng, C., Ko, K.: Omega3P: A parallel finite–element eigenmode analysis code for accelerator cavities. SLAC-PUB-13529 (2009)

    Google Scholar 

  27. Mehrmann, V., Schröder, C., Simoncini, V.: An implicitly restarted Krylov subspace method for real symmetric/skew–symmetric eigenproblems. Lin. Algebra Appl. 436(10), 4070–4087 (2012)

    Article  MATH  Google Scholar 

  28. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford Science Publications (2003)

    Google Scholar 

  29. Nair, D., Webb, J.P.: Estimating errors in design sensitivities. IEEE Trans. Magnet. 42(4), 559–562 (2006)

    Article  Google Scholar 

  30. Nédélec, J.C.: Mixed finite elements in R3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nédélec, J.C.: A new family of mixed finite elements in R3. Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  33. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  34. Schöberl, J., Zaglmayr, S.: High order Nédélec elements with local complete sequence property. Int. J. Comput. Math. Electrical Electronic Engrg. 24(2), 374–384 (2005)

    Article  MATH  Google Scholar 

  35. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sokolowski, J., Zolesia, J.: Introduction to Shape Optimization: Shape Sensivitiy Analysis. Springer, Berlin (1992)

    Book  Google Scholar 

  37. Stewart, G.W.: Matrix Algorithms II: Eigensystems. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  38. Stathopoulos, A., Wu, K.: A block orthonormalization procedure with constant synchronization requirements. SIAM J. Sci. Comput. 23(6), 2165–2182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vardapetyan, L., Demkowicz, L.: hp-adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Eng. 169, 331–344 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Webb, J.P.: Using adjoint solutions to estimate errors in global quantities. IEEE Trans. Magnet. 41(5), 1728–1731 (2005)

    Article  Google Scholar 

  41. Zaglmayr, S.: High Order Finite Element Methods for Electromagnetic Field Computation. PhD thesis, Johannes Kepler University Linz (2006)

    Google Scholar 

  42. Zienkiewicz, O.C., Taylor, R.L.: Finite Element Method. The Basis, vol. 1. Elsevier (2000)

    Google Scholar 

  43. Zhu, Y., Cangellaris, A.: Multigrid Finite Element Methods for Electromagnetic Field Modeling. IEEE Press Series on Electromagnetic Wave Theory (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Reitzinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reitzinger, S., Wabro, M., Zaglmayr, S. (2013). Sensitivity Analysis for Maxwell Eigenvalue Problems in Industrial Applications. In: Apel, T., Steinbach, O. (eds) Advanced Finite Element Methods and Applications. Lecture Notes in Applied and Computational Mechanics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30316-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30316-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30315-9

  • Online ISBN: 978-3-642-30316-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics