Skip to main content
Book cover

Magnonics pp 101–115Cite as

Micromagnetic Simulations in Magnonics

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 125))

Abstract

We review the use of numerical micromagnetic simulations (“micromagnetics”) for investigations in magnonics, the study of spin waves and their quanta – magnons. We argue that, when used with suitable post-processing tools, micromagnetics provide the power and flexibility necessary both for interpretation of complex magnonic phenomena observed in realistic magnetic structures and devices and for prediction of novel effects. We foresee that the development of multiscale and multiphysics extensions of micromagnetic solvers will broaden both the scope of micromagnetic simulations in magnonics and the field of magnonics itself. For example, the extension of micromagnetics to solvers based on atomistic spin models will underpin application of the developed methodology to studies of phenomena involving both magnons and other fundamental excitations of the solid state. In a more distant perspective, it is highly intriguing to study spin waves in non-stationary conditions (i.e. in structures with time dependent material properties), such as those realized in experiments with samples under ultrafast optical pumping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The saturation magnetization is M S=8.0×105 A/m, the exchange stiffness is A=1.3×10−11 J/m, and the gyromagnetic ratio is γ=2.32×105 m/As. The corresponding exchange length is \(\sqrt{\frac{2A}{\mu_{0}M_{\mathrm{S}}^{2}}} \approx 5~\mathrm{nm}\). No crystal anisotropy is assumed. The value of the damping constant is specified separately for each simulation.

References

  1. V.V. Kruglyak, S.O. Demokritov, D. Grundler, J. Phys. D, Appl. Phys. 43, 264001 (2010), and references therein

    Article  Google Scholar 

  2. F. Bloch, Z. Phys. 61, 206 (1930)

    Article  Google Scholar 

  3. M. Krawczyk, J.-C. Lévy, D. Mercier, H. Puszkarski, Phys. Lett. A 282, 186 (2001)

    Article  Google Scholar 

  4. V.V. Kruglyak, A.N. Kuchko, Physica B 339, 130 (2003)

    Article  Google Scholar 

  5. V.V. Kruglyak, A.N. Kuchko, J. Magn. Magn. Mater. 272–276, 302 (2004)

    Article  Google Scholar 

  6. S.A. Nikitov, P. Tailhades, C.S. Tsai, J. Magn. Magn. Mater. 236, 320 (2001)

    Article  Google Scholar 

  7. C. Elachi, IEEE Trans. Magn. MAG-11, 36 (1975)

    Article  Google Scholar 

  8. R.L. Stamps, B. Hillebrands, Phys. Rev. B 44, 5095 (1991)

    Article  Google Scholar 

  9. E.L. Albuquerque, M.G. Cottam, Phys. Rep. 376, 225 (2003), and references therein

    Article  Google Scholar 

  10. G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, A.O. Adeyeye, M. Kostylev, J. Phys. D, Appl. Phys. 43, 264003 (2010), and references therein

    Article  Google Scholar 

  11. A.A. Serga, A.V. Chumak, B. Hillebrands, J. Phys. D, Appl. Phys. 43, 264002 (2010), and references therein

    Article  Google Scholar 

  12. S.K. Kim, J. Phys. D, Appl. Phys. 43, 264004 (2010), and references therein

    Article  Google Scholar 

  13. A. Khitun, M. Bao, K.L. Wang, J. Phys. D, Appl. Phys. 43, 264005 (2010), and references therein

    Article  Google Scholar 

  14. H. Al-Wahsh, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, Surf. Sci. Rep. 66, 29 (2011), and references therein

    Article  Google Scholar 

  15. B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, Phys. Rep. 507, 107 (2011), and references therein

    Article  Google Scholar 

  16. P.S. Keatley, V.V. Kruglyak, P. Gangmei, R.J. Hicken, Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 369, 3115 (2011), and references therein

    Article  Google Scholar 

  17. J. Jorzick, S.O. Demokritov, B. Hillebrands, M. Bailleul, C. Fermon, K.Y. Guslienko, A.N. Slavin, D.V. Berkov, N.L. Gorn, Phys. Rev. Lett. 88, 47204 (2002)

    Article  Google Scholar 

  18. V.V. Kruglyak, P.S. Keatley, A. Neudert, R.J. Hicken, J.R. Childress, J.A. Katine, Phys. Rev. Lett. 104, 027201 (2010)

    Article  Google Scholar 

  19. V.L. Zhang, H.S. Lim, C.S. Lin, Z.K. Wang, S.C. Ng, M.H. Kuok, S. Jain, A.O. Adeyeye, M.G. Cottam, Appl. Phys. Lett. 99, 143118 (2011)

    Article  Google Scholar 

  20. W.K. Hiebert, A. Stankiewicz, M.R. Freeman, Phys. Rev. Lett. 79, 1134 (1997)

    Article  Google Scholar 

  21. J. Ding, M. Kostylev, A.O. Adeyeye, Phys. Rev. Lett. 107, 047205 (2011)

    Article  Google Scholar 

  22. S. Neusser, H.G. Bauer, G. Duerr, R. Huber, S. Mamica, G. Woltersdorf, M. Krawczyk, C.H. Back, D. Grundler, Phys. Rev. B 84, 184411 (2011)

    Article  Google Scholar 

  23. A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996)

    Google Scholar 

  24. M. Donahue, D.G. Porter, OOMMF User’s guide, Version 1.0, Interagency Report NISTIR 6376, NIST, Gaithersburg, MD 1999 at http://math.nist.gov/oommf/

  25. http://www.micromagus.de/

  26. http://www.soton.ac.uk/~fangohr/nsim/nmag/

  27. The International Technology Roadmap for Semiconductors, http://www.itrs.net/Links/2009ITRS/Home2009.htm

  28. M. Pardavi-Horvath, J. Magn. Magn. Mater. 215–216, 171 (2000)

    Article  Google Scholar 

  29. R. Hertel, W. Wulfhekel, J. Kirschner, Phys. Rev. Lett. 93, 257202 (2004)

    Article  Google Scholar 

  30. S.V. Vasiliev, V.V. Kruglyak, M.L. Sokolovskii, A.N. Kuchko, J. Appl. Phys. 101, 113919 (2007)

    Article  Google Scholar 

  31. K.S. Lee, S.K. Kim, J. Appl. Phys. 104, 053909 (2008)

    Article  Google Scholar 

  32. http://www.magnonics.org/semargl/

  33. B.C. Choi, Y.K. Hong, J. Rudge, E. Girgis, J. Kolthammer, G.W. Donohoe, Phys. Status Solidi, B Basic Solid State Phys. 244, 4486 (2007)

    Article  Google Scholar 

  34. L. Kaganovskiy, D. Litvinov, S. Khizroev, S. Wilcox, J. Appl. Phys. 110, 043901 (2011)

    Article  Google Scholar 

  35. S. Lepadatu, J.S. Claydon, C.J. Kinane, T.R. Charlton, S. Langridge, A. Potenza, S.S. Dhesi, P.S. Keatley, R.J. Hicken, B.J. Hickey, C.H. Marrows, Phys. Rev. B 81, 020413 (2010)

    Article  Google Scholar 

  36. D.V. Berkov, N.L. Gorn, J. Phys. D, Appl. Phys. 41, 164013 (2008)

    Article  Google Scholar 

  37. F. Montoncello, L. Giovannini, F. Nizzoli, R. Zivieri, G. Consolo, G. Gubbiotti, J. Magn. Magn. Mater. 322, 2330 (2010)

    Article  Google Scholar 

  38. S. Choi, K.-S. Lee, S.-K. Kim, Appl. Phys. Lett. 89, 062501 (2006)

    Article  Google Scholar 

  39. S. Bance, T. Schrefl, G. Hrkac, A. Goncharov, D.A. Allwood, J. Dean, J. Appl. Phys. 103, 07E735 (2008)

    Article  Google Scholar 

  40. Y. Au, T. Davison, E. Ahmad, P.S. Keatley, R.J. Hicken, V.V. Kruglyak, Appl. Phys. Lett. 98, 122506 (2011)

    Article  Google Scholar 

  41. Y. Au, E. Ahmad, O. Dmytriiev, M. Dvornik, T. Davison, V.V. Kruglyak, Appl. Phys. Lett. 100, 182404 (2012)

    Article  Google Scholar 

  42. C.S. Lin, H.S. Lim, Z.K. Wang, S.C. Ng, M.H. Kuok, A.O. Adeyeye, J. Nanosci. Nanotechnol. 11, 2615 (2011)

    Article  Google Scholar 

  43. C. Ragusa, M. Carpentieri, F. Celegato, P. Tiberto, E. Enrico, L. Boarino, G. Finocchio, IEEE Trans. Magn. 47, 2498 (2011)

    Article  Google Scholar 

  44. R. Huber, D. Grundler, Proc. SPIE 8100, 81000D (2011)

    Article  Google Scholar 

  45. O. Gerardin, H. Le Gall, M.J. Donahue, N. Vukadinovic, J. Appl. Phys. 89, 7012 (2001)

    Article  Google Scholar 

  46. J.P. Park, P. Eames, D.M. Engebretson, J. Berezovsky, P.A. Crowell, Phys. Rev. Lett. 89, 277201 (2002)

    Article  Google Scholar 

  47. M. Buess, R. Höllinger, T. Haug, K. Perzlmaier, U. Krey, D. Pescia, M.R. Scheinfein, D. Weiss, C.H. Back, Phys. Rev. Lett. 93, 77207 (2004)

    Article  Google Scholar 

  48. R.D. McMichael, M.D. Stiles, J. Appl. Phys. 97, 10J901 (2005)

    Article  Google Scholar 

  49. S. Jung, B. Watkins, L. DeLong, J.B. Ketterson, V. Chandrasekhar, Phys. Rev. B 66, 132401 (2002)

    Article  Google Scholar 

  50. V.V. Kruglyak, P.S. Keatley, R.J. Hicken, J.R. Childress, J.A. Katine, Phys. Rev. B 75, 024407 (2007)

    Article  Google Scholar 

  51. C.C. Dantas, L.A. de Andrade, Phys. Rev. B 78, 024441 (2008)

    Article  Google Scholar 

  52. C.C. Dantas, Physica E 44, 675 (2011)

    Article  Google Scholar 

  53. H.T. Nguyen, M.G. Cottam, J. Phys. D, Appl. Phys. 44, 315001 (2011)

    Article  Google Scholar 

  54. H. Yang, G.H. Yun, Y.J. Cao, J. Phys. D, Appl. Phys. 44, 455001 (2011)

    Article  Google Scholar 

  55. I.P. Coelho, M.S. Vasconcelos, C.G. Bezerra, J. Magn. Magn. Mater. 323, 3162 (2011)

    Article  Google Scholar 

  56. V.V. Kruglyak, R.J. Hicken, J. Magn. Magn. Mater. 306, 191 (2006)

    Article  Google Scholar 

  57. F.S. Ma, H.S. Lim, Z.K. Wang, S.N. Piramanayagam, S.C. Ng, M.H. Kuok, Appl. Phys. Lett. 98, 153107 (2011)

    Article  Google Scholar 

  58. M. Dvornik, V.V. Kruglyak, Phys. Rev. B 84, 140405 (2011)

    Article  Google Scholar 

  59. F.S. Ma, H.S. Lim, Z.K. Wang, S.N. Piramanayagam, S.C. Ng, M.H. Kuok, IEEE Trans. Magn. 47, 2689 (2011)

    Article  Google Scholar 

  60. M. Dvornik, A.N. Kuchko, V.V. Kruglyak, J. Appl. Phys. 109, 07D350 (2011)

    Google Scholar 

  61. E. Schlömann, J. Appl. Phys. 35, 159 (1964)

    Article  Google Scholar 

  62. E. Schlömann, J. Appl. Phys. 35, 167 (1964)

    Article  Google Scholar 

  63. M. Dvornik, P.V. Bondarenko, B.A. Ivanov, V.V. Kruglyak, J. Appl. Phys. 109, 07B912 (2011)

    Google Scholar 

  64. R.V. Mikhaylovskiy, E. Hendry, V.V. Kruglyak, Phys. Rev. B 82, 195446 (2010)

    Article  Google Scholar 

  65. http://www.originlab.com/

  66. http://www.mathworks.co.uk/

  67. R. Gerber, Getting Started with OpenMP (Intel Corporation, Santa Clara, 2008)

    Google Scholar 

  68. N. Soveiko, M.S. Nakhla, R. Achar, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29, 65 (2010)

    Article  Google Scholar 

  69. AMD Core Math Library Redistribution Agreements (2010). http://download2-developer.amd.com/amd/ACML/ACML_June_24_2010.pdf, as of 24 June 2010

Download references

Acknowledgements

The authors gratefully acknowledge funding received from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreements no 233552 (DYNAMAG) and 228673 (MAGNONICS) and from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under project EP/E055087/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kruglyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dvornik, M., Au, Y., Kruglyak, V.V. (2013). Micromagnetic Simulations in Magnonics. In: Demokritov, S., Slavin, A. (eds) Magnonics. Topics in Applied Physics, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30247-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30247-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30246-6

  • Online ISBN: 978-3-642-30247-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics