Skip to main content

Review of the Application of Matrix Information Theory in Video Surveillance

  • Chapter
  • First Online:
  • 4412 Accesses

Abstract

Video Surveillance is an active research topic in Computer Vision. Its applications include authentication in security sensitive areas, biometric-based specific person identification, overcrowding statistics and congestion control, strange situation detection and alarming, interactive surveillance using multiple cameras and so on. Video surveillance mainly involves modeling of background, detection of motion, classification of moving objects and object tracking. Background modeling is often used to detect moving object in video acquired by a fixed camera. Subspace learning method namely Principal Component Analysis (PCA) have been used to model the background to represent online data content while reducing dimension significantly. Detection and classification of the object of interest in the image captured by the camera is a vital step for automatic activity monitoring. Linear discriminant analysis (LDA) is a well-known classical statistical technique for dimension reduction and feature extraction for classification. This chapter gives an overview of the applications of Matrix Information Theory in video surveillance viz., background modeling by PCA, face recognition/object classification by LDA and finally object tracking using a covariance-based object description. The algorithms which are discussed in this paper are somewhat related to the broad area of Matrix Information Theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, San Francisco (2010)

    Google Scholar 

  2. Robert, T.C., Lipton, A.J., Kanade, T.: Introduction to the special section on video surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 745–746 (2000)

    Article  Google Scholar 

  3. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  4. Delac, K., Grgic, M., Grgic, S.: A comparative study of PCA, ICA and LDA. In: Proceedings of the \(5^{th}\) EURASIP Conference on Speech and Image Processing, Multimedia Communications and Services, pp. 99–106 (2005)

    Google Scholar 

  5. Austvoll, I., Kwolek, B.: Region covariance matrix-based object tracking with occlusions handling. In: International Conference on Computer Vision and Graphics, pp. 201–208 (2010)

    Google Scholar 

  6. Hu, W.M., Tan, T.N., Wang, L., Maybank, S.: A survey of visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. 34(3), 334–352 (2004)

    Article  Google Scholar 

  7. Datla, S., Agarwal, A., Niyogi, R.: A novel algorithm for achieving a light-weight tracking system. In: International Conference on Contemporary, Computing, pp. 265–276 (2010)

    Google Scholar 

  8. Trucco, E., Plakas, K.: Video tracking: a concise survey. IEEE J. Oceanic Eng. 31(2), 520–529 (2006)

    Article  Google Scholar 

  9. Bouwmans, T.: Subspace learning for background modeling: a survey. Recent Pat. Comput. Sci. 2(3), 223–234 (2009)

    Article  Google Scholar 

  10. Jolliffe, I.: Principal Component Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  11. Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13(4–5), 411–430 (2000)

    Google Scholar 

  12. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 13, 556–562 (2001)

    Google Scholar 

  13. Tang, F., Tao, H.: Fast linear discriminant analysis using binary bases. Int. Conf. Pattern Recogn. 28(16), 2209–2218 (2007)

    Article  Google Scholar 

  14. Hardoon, D.R., Szedmak, S.R., Taylor, J.R.S.: Canonical correlation analysis: An overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)

    Article  MATH  Google Scholar 

  15. Kemsley, E.K.: Discriminant Analysis and Class Modeling of Spectroscopic Data. Wiley, Chichester (1998)

    Google Scholar 

  16. Zheng, N., Xue, J.: Statistical Learning and Pattern Analysis for Image and Video Processing. Springer, New York (2009)

    Book  MATH  Google Scholar 

  17. Biswas, S., Sil, J., Sengupta, N.: Background modeling and implementation using discrete wavelet transform: a review. ICGST J. Graph. Vis. Image Process. 11(1), 29–42 (2011)

    Google Scholar 

  18. Elhabian, S.Y., El-Sayed, K.M., Ahmed, S.H.: Moving object detection in spatial domain using background removal techniques—state-of-art. Recent Pat. Comput. Sci. 1(1), 32–34 (2008)

    Google Scholar 

  19. Xu, L., Qi, F., Jiang, R., Wu, G.: Shadow detection and removal in real images: A survey. Shanghai Jiao Tong University, Technical report (2006)

    Google Scholar 

  20. Bishop, C.M.: Pattern Recognition and Machine Learning Information Science and Statistics. Springer, New York (2006)

    Google Scholar 

  21. Oliver, N., Rosario, B., Pentland, A.: A Bayesian computer vision system for modeling human interactions. In: International Conference on vision Systems, pp. 255–272 (1999)

    Google Scholar 

  22. Xu, Z., Shi, P., Gu, I.: An eigenbackground subtraction method using recursive error compensation, PCM, pp. 779–787 (2006)

    Google Scholar 

  23. Kawabata, S., Hiura, S., Sato, K.: Real-time detection of anomalous objects in dynamic scene. In: International Conference on Pattern Recognition, vol. 3, pp. 1171–1174 (2006)

    Google Scholar 

  24. Hall, P.M., Marshall, A.D., Martin, R.R.: Incremental eigen analysis for classification. In: British Machine Vision Conference, pp. 286–295 (1998)

    Google Scholar 

  25. Leonardis, A., Bischof, H.: Robust recognition using eigen images. Comput. Vis. Image Underst. 78(1), 99–118 (2000)

    Article  Google Scholar 

  26. Storer, M., Roth, P.M., Urschler, M., Bischof, H.: Fast-robust PCA. In: Proceedings of the 16th Scandinavian Conference on Image Analysis, pp. 430–439 (2009)

    Google Scholar 

  27. Li, Y., Xu, L., Morphett, J., Jacobs, R.: An integrated algorithm of incremental and robust PCA. IEEE International Conference on Image Processing, pp. 245–248 (2003)

    Google Scholar 

  28. Li, Y.: On incremental and robust subspace learning. Pattern Recogn. 37(7), 1509–1518 (2004)

    Article  MATH  Google Scholar 

  29. Skocaj, D., Leonardis, A.: Weighted and robust incremental method for subspace learning. In: International Conference on Computer Vision, pp. 1494–1501 (2003)

    Google Scholar 

  30. Skocaj, D., Leonardis, A.: Incremental and robust learning of subspace representations. Image Vis. Comput. 26(1), 27–38 (2008)

    Article  Google Scholar 

  31. Zhang, J., Zhuang, Y.: Adaptive weight selection for incremental eigenbackground modeling. IEEE International Conference on Multimedia and Expo, pp. 851–854 (2007)

    Google Scholar 

  32. La, X., Zhao, G., Meng, H.: A new method for selecting gradient weight in incremental eigenbackground modeling. In: International Conference on Information and Automation, pp. 801–805 (2009)

    Google Scholar 

  33. Wang, L., Wang, L., Zhuo, Q., Xiao, H., Wang, W.: Adaptive eigenbackground for dynamic background modeling. Intelligent Computing in Signal Processing and Pattern Recognition, Lecture Notes in Control and Information Sciences, vol. 345, pp. 670–675 (2006)

    Google Scholar 

  34. Wang, L., Wang, L., Wen, M., Zhuo, Q., Wang, W.: Background subtraction using incremental subspace learning. In: International Conference on Image Processing, pp. 45–48 (2007)

    Google Scholar 

  35. Zhang, J., Yang, Y., Zhu, C.: Robust foreground segmentation using subspace based background model. In: Asia-Pacific Conference on Information Processing, pp. 214–217 (2009)

    Google Scholar 

  36. Li, R., Chen, Y., Zhang, X.: Fast robust eigenbackground updating for foreground detection. In: International Conference on Image Processing, pp. 1833–1836 (2006)

    Google Scholar 

  37. Han, B., Jain, R.: Real-time subspace based background modeling using multi-channel data, \(8^{th}\) International Symposium on Visual, Computing, (2007) 162–172.

    Google Scholar 

  38. Zhao, Y., Gong, H., Lin, L., Jia, Y.: Spatio-temporal patches for night background modeling by subspace learning. In: International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  39. Weng, J., Zhang, Y., Hwang, W.: Candid covariance free incremental principal components analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1034–1040 (2003)

    Article  Google Scholar 

  40. Wu, X., Wang, Y., Li, J.: Video background segmentation using adaptive background models. International Conference on Image Analysis and Processing, pp. 623–632 (2009)

    Google Scholar 

  41. Wu, X., Yang, L., Yang, C.: Real-time foreground segmentation based on a fused background model. International Conference on Computer and Automation Engineering, pp. 585–588 (2010)

    Google Scholar 

  42. Dong, Y., DeSouza, G.N.: Adaptive learning of multi-subspace for foreground detection under illumination changes. J. Comput. Vis. Image Underst. 115(1), 31–49 (2011)

    Google Scholar 

  43. Quivy, C., Kumazawa, I.: Background images generation based on the Nelder-Mead simplex algorithm using the eigenbackground model. In: International Conference on Image Analysis and Recognition, pp. 21–29 (2011)

    Google Scholar 

  44. Hu, Z., Wang, Y., Tian, Y., Huang, T.: Selective eigenbackgrounds method for background subtraction in crowed scenes. In: International Conference on Image Processing, pp. 3277–3280 (2011)

    Google Scholar 

  45. Kawanishi, Y., Mitsugami, I., Mukunoki, M., Minoh, M.: Background image generation preserving lighting condition of outdoor scenes. Procedia Soc. Behav. Sci. 2(1), 137–142 (2010)

    Article  Google Scholar 

  46. Candes, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(1), 1–37 (2009)

    MathSciNet  Google Scholar 

  47. Wright, J., Peng, Y., Ma, Y., Ganesh, A., Roa, S.: Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization, Neural Inf. Process. Syst. 2080–2088 (2009)

    Google Scholar 

  48. Xu, H., Caramanis, C., Sanghavi, S.: Robust PCA via outlier pursuit. Adv. Neural Inf. Pro. Syst. 23, 2496–2504 (2010)

    Google Scholar 

  49. Zhou, T., Tao, D.: GoDec: Randomized low-rank and sparse matrix decomposition in noisy case. In: International Conference on Machine Learning, pp. 33–40 (2011)

    Google Scholar 

  50. Ding, X., He, L., Carin, L.: Bayesian robust principal component analysis. IEEE Trans. Image Process. 20(12), 3419–3430 (2011)

    Google Scholar 

  51. Mateos, G., Giannakis, G.: Sparsity control for robust principal component analysis. International Conference on Signals Systems and Computers, pp. 1925–1929 (2010)

    Google Scholar 

  52. Torre, F.D.L., Black, M.J.: A framework for robust subspace learning. Int. J. Comput. Vision 54(1–3), 183–209 (2003)

    Google Scholar 

  53. Mu, Y., Dong, J., Yuan, X., Yan, S.: Accelerated low-rank visual recovery by random projection. International Conference on Computer Vision, pp. 2609–2616 (2011)

    Google Scholar 

  54. Anderson, M., Ballard, J., Keutzer, K.: Communication-Avoiding QR decomposition for GPUs. In: IEEE International Symposium on Parallel and Distributed Processing, pp. 48–58 (2011)

    Google Scholar 

  55. Qiu, C., Vaswani, N.: Real-time robust principal components pursuit. In: International Conference on Communication Control and Computing (2010)

    Google Scholar 

  56. Qiu, C., Vaswani, N.: Support predicted modified-CS for recursive robust principal components pursuit. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 668–672 (2011)

    Google Scholar 

  57. Zhao, C., Wang, X., Cham, W.: Background Subtraction via Robust Dictionary Learning, EURASIP J. Image Video Process. 2011, 1–12 (2011)

    Google Scholar 

  58. Yamazaki, M., Xu, G., Chen, Y.: Detection of moving objects by independent component analysis. In: 7th Asian Conference on Computer Vision, pp. 467–478 (2006)

    Google Scholar 

  59. Tsai, D., Lai, C.: Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans Image Process. 18(1), 158–167 (2009)

    Article  MathSciNet  Google Scholar 

  60. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recogn. 34, 2067–2070 (2001)

    Article  MATH  Google Scholar 

  61. Song, F., Zhang, D., Wang, J., Liu, H., Tao, Q.: A parameterized direct LDA and its application to face recognition. Neurocomputing 71, 191–196 (2007)

    Article  Google Scholar 

  62. Loog, M., Duin, R.P.W., Haeb-Umbach, R.: Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Trans. Pattern Anal. Mach. Intell. 23, 762–766 (2001)

    Article  Google Scholar 

  63. Zhou, D., Yang, X.: Face recognition using direct-weighted LDA. 8th Pacific Rim International Conference on Artificial Intelligence, pp. 760–768 (2004)

    Google Scholar 

  64. Chen, L.F., Liao, H.Y.M., Lin, J.C., Ko, M.T., Yu, G.J.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn. 33(10), 1713–1726 (2000)

    Article  Google Scholar 

  65. Liu, W., Wang, Y., Li, Z., Tan, T.: Null Space Approach of Fisher Discriminant Analysis for Face Recognition, Biometric Authentication. Springer, Berlin (2004)

    Google Scholar 

  66. Wang, X., Tang, X.: Dual-space linear discriminant analysis for face recognition. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 564–569 (2004)

    Google Scholar 

  67. Zheng, W., Tang, X.: Fast algorithm for updating the discriminant vectors of dual-space LDA. IEEE Trans. Inf. Forensics Secur. 4(3), 418–427 (2009)

    Article  MathSciNet  Google Scholar 

  68. Pima. I., Aladjem, M.: Regularized discriminant analysis for face recognition. Pattern Recogn. 37(9), 1945–1948 (2004)

    Google Scholar 

  69. Howland, P., Park, H.: Generalized discriminant analysis using the generalized singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 26, 995–1006 (2004)

    Article  Google Scholar 

  70. Ye, J., Janardan, R., Park, C.H., Park, H.: An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 982–994 (2004)

    Article  Google Scholar 

  71. Lu, J.W., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using LDA based algorithms. IEEE Trans. Neural Networks 14, 195–200 (2003)

    Article  Google Scholar 

  72. Lu, J.W., Plataniotis, K.N., Venetsanopoulos, A.N.: Boosting linear discriminant analysis for face recognition. In: Proceedings of the IEEE International Conference on Image Processing, pp. 657–660 (2003)

    Google Scholar 

  73. Yang, Q., Ding, Q.X.: Discriminant local feature analysis of facial images. In: IEEE International Conference on Image Processing, pp. 863–866 (2003)

    Google Scholar 

  74. Hwang, W., Kim, J., Kee, S.: Face recognition using local features based on two-layer block model. In: Proceedings of the International Association for Pattern Recognition Conference on Machine Vision Applications, pp. 104–107 (2005)

    Google Scholar 

  75. Liu, Q., Huang, R., Lu, H., Ma, S.: Face recognition using kernel based Fisher discriminant analysis. In: 5th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 197–201 (2002)

    Google Scholar 

  76. Liu, Q., Tang, X., Lu, H., Ma, S.: Kernel scatter-difference based discriminant analysis for face recognition. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 419–422 (2004)

    Google Scholar 

  77. Li, M., Yuan, B.: 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recogn. Lett. 26, 527–532 (2005)

    Article  Google Scholar 

  78. Jing, X.Y., Tang, Y.Y., Zhang, D.: A fourier-LDA approach for image recognition. Pattern Recogn. 38, 453–457 (2005)

    Article  MATH  Google Scholar 

  79. Pang, Y.W., Zhang, L., Li, M.J., Liu, Z.K., Ma, W.Y.: A novel Gabor-LDA based face recognition method. Adv. Multimedia Inf. Process. PCM 2004(3331), 352–358 (2004)

    Article  Google Scholar 

  80. Nhat, V.D.M., Lee, S.: Block LDA for Face Recognition, Computational Intelligence and Bioinspired Systems, vol. 3512, pp. 899–905. Springer, Berlin (2005)

    Google Scholar 

  81. Zhou, D., Yang, X.: Face recognition using enhanced Fisher linear discriminant model with facial combined feature. In: 8th Pacific Rim International Conference on Artifical Intelligence: Trends in Artificial Intelligence, vol. 3157, pp. 769–777, Springer, Berlin (2004)

    Google Scholar 

  82. Zhang, W.C., Shan, S.G., Gao, W., Chang, Y.Z., Cao, B.: Component based cascade linear discriminant analysis for face recognition. Adv. Biometric Pers. Authentication 3338, 288–295 (2004)

    Article  Google Scholar 

  83. Zhao, H., Yuen, P.C.: Incremental linear discriminant analysis for face recognition. IEEE Trans. Syst. Man Cybern. 38, 210–221 (2008)

    Article  MATH  Google Scholar 

  84. Jafri, R., Arabnia, H.R.: A survey of face recognition techniques. J. Inf. Process. Syst. 5(2), 41–68 (2009)

    Google Scholar 

  85. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 1–45 (2006)

    Article  Google Scholar 

  86. Fu, Z., Han, Y.: Centroid weighted Kalman filter for visual object tracking. J. Int. Meas. Confederation 45(4), 650–655 (2012)

    Google Scholar 

  87. Li X., Wang, K., Wang, W., Li X.: A multiple object tracking method using Kalman filter. In: IEEE International Conference on Information and Automation, pp. 1862–1866 (2010)

    Google Scholar 

  88. Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2001)

    Article  Google Scholar 

  89. Smith, A.F.M., Gelfand, A.E.: Bayesian statistics without tears: a sampling-resampling perspective. The Am. Statistician 46(2), 84–88 (1992)

    MathSciNet  Google Scholar 

  90. Snoussi, H., Richard, C.: Monte Carlo tracking on the Riemannian manifold of multivariate normal distributions. In: IEEE Digital Signal Processing, pp. 280–285 (2009)

    Google Scholar 

  91. Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on Lie algebra. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 728–735 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M K Bhuyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhuyan, M.K., T, M. (2013). Review of the Application of Matrix Information Theory in Video Surveillance. In: Nielsen, F., Bhatia, R. (eds) Matrix Information Geometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30232-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30232-9_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30231-2

  • Online ISBN: 978-3-642-30232-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics