Skip to main content

Application of Automatic Differentiation to an Incompressible URANS Solver

  • Conference paper
  • First Online:
Recent Advances in Algorithmic Differentiation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 87))

Abstract

This paper deals with the task of generating a discrete adjoint solver from a given primal Unsteady Reynolds Averaged Navier-Stokes (URANS) solver for incompressible flows. This adjoint solver is to be employed in active flow control problems to enhance the performance of aerodynamic configurations. We discuss on how the development of such a code can be eased through the use of the reverse mode of Automatic/Algorithmic Differentiation (AD). If AD is applied in a black-box fashion then the resulting adjoint URANS solver will have prohibitively expensive memory requirements. We present several strategies to circumvent the excessive memory demands. We also address the parallelization of the adjoint code and the adjoint counterparts of the MPI directives that are used in the primal solver. The adjoint code is validated by applying it to the standard test case of a rotating cylinder by active flow control. The sensitivities based on the adjoint code are compared with the values obtained from finite differences and forward mode AD code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caretto, L., Gosman, A., Patankar, S., Spalding, D.: Two calculation procedures for steady, three-dimensional flows with recirculation. In: Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Lecture Notes in Physics, vol. 19, pp. 60–68. Springer Berlin / Heidelberg (1973)

    Google Scholar 

  2. Carnarius, A., Thiele, F., Özkaya, E., Gauger, N.: Adjoint approaches for optimal flow control. AIAA Paper 2010–5088 (2010)

    Google Scholar 

  3. Christianson, B.: Reverse accumulation and attractive fixed points. Optimization Methods and Software 3, 311–326 (1994)

    Google Scholar 

  4. Courty, F., Dervieux, A., Koobus, B., Hascoët, L.: Reverse automatic differentiation for optimum design: from adjoint state assembly to gradient computation. Optimization Methods and Software 18(5), 615–627 (2003)

    Google Scholar 

  5. E. Özkaya, E., Gauger, N.: Automatic transition from simulation to one-shot shape optimization with Navier-Stokes equations. GAMM-Mitteilungen 33(2), 133–147 (2010). DOI 10.1002/gamm.201010011. URL http://dx.doi.org/10.1002/gamm.201010011

  6. Elliot, J., Peraire, J.: Practical 3D aerodynamic design and optimization using unstructured meshes. AIAA Journal 35(9), 1479–1485 (1997)

    Google Scholar 

  7. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin; Heidelberg (2008)

    Google Scholar 

  8. Gauger, N., Walther, A., Moldenhauer, C., Widhalm, M.: Automatic differentiation of an entire design chain for aerodynamic shape optimization. Notes on Numerical Fluid Mechanics and Multidisciplinary Design 96, 454–461 (2007)

    Google Scholar 

  9. Giles, M., Duta, M., Müller, J., Pierce, N.: Algorithm developments for discrete adjoint methods. AIAA Journal 41(2), 198–205 (2003)

    Google Scholar 

  10. Griewank, A., Faure, C.: Reduced functions, gradients and hessians from fixed point iteration for state equations. Numerical Algorithms 30(2), 113–139 (2002)

    Google Scholar 

  11. Griewank, A., Walther, A.: Algorithm 799:revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Software 26(1), 19–45 (2000)

    Google Scholar 

  12. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edn. No. 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia, PA (2008). URL http://www.ec-securehost.com/SIAM/OT105.html

  13. Hascoët, L., Pascual, V.: TAPENADE 2.1 user’s guide. Rapport technique 300, INRIA, Sophia Antipolis (2004). URL http://www.inria.fr/rrrt/rt-0300.html

  14. Heimbach, P., Hill, C., Giering, R.: An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation. Future Generation Computer Systems 21(8), 1356–1371 (2004)

    Google Scholar 

  15. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3, 233–260 (1988)

    Google Scholar 

  16. Jameson, A., Pierce, N., Martinelli, L.: Optimum aerodynamic design using the Navier–Stokes equations. J. Theor. Comp. Fluid Mech. 10, 213–237 (1998)

    Google Scholar 

  17. Nielsen, E., Anderson, W.: Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations. AIAA Journal 37(11), 957–964 (1999)

    Google Scholar 

  18. Pironneau, O.: On optimum design in fluid mechanics. J. Fluid Mech. 64, 97–110 (1974)

    Google Scholar 

  19. Utke, J., Hascoet, L., Heimbach, P., Hill, C., Hovland, P., Naumann, U.: Toward adjoinable MPI. In: Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, pp. 1–8 (2009). DOI 10.1109/ IPDPS.2009.5161165

    Google Scholar 

  20. Wilcox, D.: Re-assessment of the scale-determining equation for advanced turbulence models. AIAA Journal 26(11), 1299–1310 (1988)

    Google Scholar 

  21. Xue, L.: Entwicklung eines effizienten parallelen Lösungsalgorithmus zur dreidimensionalen Simulation komplexer turbulenter Strömungen. Ph.D. thesis, Technical University Berlin (1998)

    Google Scholar 

  22. Zymaris, A., Papadimitriou, D., Giannakoglou, K., Othmer, C.: Continuous adjoint approach to the Spalart-Allmaras turbulence model for incompressible flows. Computers & Fluids 38, 1528–1538 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Ă–zkaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ă–zkaya, E., Nemili, A., Gauger, N.R. (2012). Application of Automatic Differentiation to an Incompressible URANS Solver. In: Forth, S., Hovland, P., Phipps, E., Utke, J., Walther, A. (eds) Recent Advances in Algorithmic Differentiation. Lecture Notes in Computational Science and Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30023-3_4

Download citation

Publish with us

Policies and ethics