Skip to main content

Spectral Approach for Time–Invariant Systems with General Spatial Domain

  • Chapter
  • 1191 Accesses

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

The spectral analysis of a finite– or infinite–dimensional linear operator is a well–established and profound mathematical tool for stability analysis and feedback control design. The dynamic system properties are thereby determined based on the eigenvalue distribution and the respective set of eigenvectors. For infinite–dimensional systems governed by PDEs certain restrictions apply, which are in particular related to the possible existence of continuous spectra. Fortunately, a wide class of physically important systems including, e.g., diffusion–convection–reaction, wave, Euler–Bernoulli, and Timoshenko beam equations, yields so–called Riesz spectral operators, which exhibit a purely discrete eigenvalue distribution and whose eigenvectors and adjoint eigenvectors, respectively, span a basis for the underlying function space. These properties can be advantageously exploited for the controllability and observability analysis similar to the finite–dimensional case [14]. Furthermore, Riesz spectral operators satisfy the spectrum determined growth assumption such that the stability properties of the system can be directly determined based on the eigenvalue distribution [14, 37]. This property can be in particular utilized for the stabilizability and stability analysis as well as for the design of stabilizing state–feedback controllers, see, e.g., [65, 33, 13, 48, 49, 37] and the references therein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, S.: Lectures on elliptic boundary value problems. Van Nostrand Company Inc., Princeton (1965)

    MATH  Google Scholar 

  2. Alt, H.: Lineare Funktionalanalysis, 4th edn. Springer, Heidelberg (2000)

    Google Scholar 

  3. Avdonin, S., Ivanov, S.: Families of Exponentials. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  4. Balser, W.: Formal power series and linear systems of meromorphic ordinary differential equations. Springer, New York (2000)

    MATH  Google Scholar 

  5. Balser, W., Kostov, V.: Recent progress in the theory of formal solutions for ODE and PDE. Appl. Math. Comput. 141, 113–123 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bari, N.: Sur les bases dans l’espace de Hilbert. Dokl. Akad. Nauk. SSSR 54, 379–382 (1946)

    Google Scholar 

  7. Bari, N.: Biorthogonal systems and bases in Hilbert space. Mathematika 4, 69–107 (1951)

    MathSciNet  Google Scholar 

  8. Boas, R.: Entire functions. Academic Press, New York (1954)

    MATH  Google Scholar 

  9. Carthel, C., Glowinski, R., Lions, J.: On Exact and Approximate Boundary Controllabilities for the Heat Equation: A Numerical Approach. J. Optim. Theory and Appl. 82(3), 429–484 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press (1984)

    Google Scholar 

  11. Chitour, Y., Coron, J.M., Garavello, M.: On conditions that prevent steady–state controllability of certain linear partial differential equations. Disc. Cont. Dyn. Sys. 14(4), 643–672 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Courant, B.: Über die Schwingungen eingespannter Platten. Math. Z 15, 195–200 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  13. Curtain, R.: On stabilizability of linear spectral systems via state boundary feedback. SIAM J. Control Optim. 23(1), 144–152 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Curtain, R., Zwart, H.: An Introduction to Infinite–Dimensional Linear Systems Theory. Texts in Applied Mathematics, vol. 21, Springer, New York (1995)

    Google Scholar 

  15. Dautray, R., Lions, J.: Mathematical Analysis and Numerical Methods for Science and Technology. Evolution Problems I, vol. 5. Springer, Heidelberg (2000)

    Google Scholar 

  16. Dunford, N., Schwartz, J.: Linear operators, part III: Spectral operators. Wiley Interscience, New York (1963)

    MATH  Google Scholar 

  17. Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2002)

    Google Scholar 

  18. Fattorini, H.: Boundary control systems. SIAM J. Control 6(3), 349–388 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fattorini, H.: Boundary control of temperature distributions in a parallelepipedon. SIAM J. Control 13(1), 1–13 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gilles, E.: Systeme mit verteilten Parametern. R. Oldenbourg Verlag, Wien (1973)

    Google Scholar 

  21. Gohberg, I., Krein, M.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969)

    Google Scholar 

  22. Grisvard, P.: Elliptic Problems in Non–Smooth Domains. Pitman, Boston (1985)

    Google Scholar 

  23. Guo, B.Z.: Riesz basis property and exponential stability of controlled Euler–Bernoulli beam equations with variable coefficients. SIAM J. Control Optim. 40(6), 1905–1923 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, B.Z., Zwart, H.: Riesz spectral systems. Memorandum 1594, Faculty of Mathematical Sciences. University of Twente, The Netherlands (2001)

    Google Scholar 

  25. Henikl, J., Schröck, J., Meurer, T., Kugi, A.: Infinit–dimensionaler Reglerentwurf für Euler–Bernoulli Balken mit Macro–Fibre Composite Aktoren. at–Automatisierungstechnik 60(1), 10–19 (2012)

    Article  Google Scholar 

  26. Ho, L., Russell, D.: Admissible input elements for systems in Hilbert space and a Carleson measure criterion. SIAM J. Control Optim. 21(4), 614–640 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Janocha, H.: Adaptronics and smart structures: basics, materials, design, and applications, 2nd edn. Springer, Heidelberg (2007)

    Google Scholar 

  28. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)

    MATH  Google Scholar 

  29. Kugi, A., Thull, D., Kuhnen, K.: An infinite–dimensional control concept for piezoelectric structures with complex hysteresis. Struct. Control Health Monit. 13(6), 1099–1119 (2006)

    Article  Google Scholar 

  30. Kuhnen, K., Krejci, P.: Compensation of Complex Hysteresis and Creep Effects in Piezoelectrically Actuated Systems — A New Preisach Modeling Approach. IEEE Trans. Autom. Control 54(3), 537–550 (2009)

    Article  MathSciNet  Google Scholar 

  31. Laroche, B.: Extension de la notion de platitude à des systèmes décrits par des équations aux dérivées partielles linéaires. PhD thesis. École Nationale Supérieure des Mines de Paris (2000)

    Google Scholar 

  32. Laroche, B., Martin, P., Rouchon, P.: Motion planning for the heat equation. Int. J. Robust Nonlinear Control 10, 629–643 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lasiecka, I., Triggiani, R.: Stabilization and structural assignment of Dirichlet boundary feedback parabolic equations. SIAM J. Control Optim 21(5), 766–803 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Levin, B.: Distribution of zeros of entire functions. American Mathematical Society, Providence (1980)

    Google Scholar 

  35. Levin, B.: Lectures on Entire Functions. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  36. Lube, G.: Lineare Funktionalanalysis und Anwendungen auf partielle Differentialgleichungen. Lecture Notes. Georg–August–Universität Göttingen (2006)

    Google Scholar 

  37. Luo, Z., Guo, B., Morgül, O.: Stability and Stabilization of Infinite Dimensional Systems with Applications. Springer, London (1999)

    Book  MATH  Google Scholar 

  38. Meirovitch, L.: Principles and Techniques of Vibrations. Prentice Hall, New Jersey (1997)

    Google Scholar 

  39. Meurer, T.: Feedforward and Feedback Tracking Control of Diffusion–Convection–Reaction Systems using Summability Methods. Fortschr.–Ber. VDI Reihe 8 Nr. 1081. VDI Verlag, Düsseldorf (2005)

    Google Scholar 

  40. Meurer, T.: Flatness–based Trajectory Planning for Diffusion–Reaction Systems in a Parallelepipedon — A Spectral Approach. Automatica 47(5), 935–949 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Meurer, T., Kugi, A.: Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator. Int. J. Robust Nonlin. 21(5), 542–562 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Meurer, T., Zeitz, M.: Feedforward and feedback tracking control of nonlinear diffusion–convection–reaction systems using summability methods. Ind. Eng. Chem. Res. 44, 2532–2548 (2005)

    Article  Google Scholar 

  43. Meurer, T., Zeitz, M.: Model inversion of boundary controlled parabolic partial differential equations using summability methods. Math. Comp. Model Dyn. Sys (MCMDS) 14(3), 213–230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Naylor, A., Sell, G.: Linear Operator Theory in Engineering and Science. Applied Mathematical Sciences, vol. 40. Springer, New York (1982)

    Book  MATH  Google Scholar 

  45. Nazarov, S.: On asymptotics of the spectrum of a problem in elasticity. Sib. Mat. Zh. 41(4), 895–912 (2000)

    Article  MATH  Google Scholar 

  46. Nowacki, W.: Dynamic Problems of Thermoelasticity. Noordhoff Int. Publ., PWN–Polish Scientific Publ., Warszawa (1975)

    Google Scholar 

  47. Ramis, J.P.: Les seriés k–sommables et leurs applications. In: Analysis, Micrological Calculus and Relativistic Quantum Theory. Lecture Notes in Physics, vol. 126, pp. 178–199. Springer (1980)

    Google Scholar 

  48. Rebarber, R.: Spectral assignability for distributed parameter systems with unbounded scalar control. SIAM J. Control Optim. 27(1), 148–169 (1989a)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rebarber, R.: Spectral Determination for a Cantilever Beam. IEEE Trans. Automat. Control 34(5), 502–510 (1989b)

    Article  MathSciNet  Google Scholar 

  50. Ritt, J.: On a general class of linear homogeneous differential equations of infinite order with constant coefficients. Trans. Am. Math. Soc. 18(1), 27–49 (1917)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rouchon, P.: Flatness–based control of oscillators. Z Angew Math Mech. 85(6), 411–421 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rudin, W.: Principles of mathematical analysis, 3rd edn. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  53. Rudolph, J.: Flatness Based Control of Distributed Parameter Systems. Berichte aus der Steuerungs– und Regelungstechnik. Shaker-Verlag, Aachen (2003)

    Google Scholar 

  54. Russell, D.: A Unified Boundary Controllability Theory for Hyperbolic and Parabolic Partial Differential Equations. Studies Appl. Math. 52, 189–211 (1973)

    MATH  Google Scholar 

  55. Safarov, Y., Vassiliev, D.: The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Translations of Mathematical Monographs. American Mathematical Society, Providence (1997)

    Google Scholar 

  56. Schröck, J.: Mathematical Modeling and Tracking Control of Piezo–actuated Flexible Structures. PhD thesis, Automation and Control Institute. Vienna University of Technology (2011)

    Google Scholar 

  57. Schröck, J., Meurer, T.: Experimental set–up of a flexible plate with distributed MFC actuators. Automation and Control Institute, Vienna University of Technology (2010/2011)

    Google Scholar 

  58. Schröck, J., Meurer, T., Kugi, A.: Control of a flexible beam actuated by macro-fiber composite patches – Part II: Hysteresis and creep compensation, experimental results. Smart Mater Struct. 20(1), article 015016, 11 pages (2011)

    Google Scholar 

  59. Schröck, J., Meurer, T., Kugi, A.: Non–collocated Feedback Stabilization of a Non–Uniform Euler–Bernoulli Beam with In–Domain Actuation. In: Proc. IEEE Conference on Decision and Control (CDC), Orlando (FL), USA, pp. 2776–2781 (2011)

    Google Scholar 

  60. Showalter, R.: Hilbert Space Methods for Partial Differential Equations. Electron. J. Diff. Eqns. (1994), http://www.emis.ams.org/journals/EJDE/Monographs/01/toc.html

  61. Shubov, M., Balogh, A.: Asymptotic Distribution of Eigenvalues for Damped String Equation: Numerical Approach. J. Aerosp. Eng. 18(2), 69–83 (2005)

    Article  Google Scholar 

  62. Sikkema, P.: Differential operators and differential equations of infinite order with constant coefficients. P. Norrdhoff N.V., Groningen–Djakarta (1953)

    Google Scholar 

  63. Smart Material Corp., Datasheet (2010), http://www.smart-material.com

  64. Staffans, O.: Well–Posed Linear Systems. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  65. Triggiani, R.: On the Stabilizability Problem in Banach Spaces. J. Math. Anal. Appl. 52, 383–403 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  67. Wagner, M., Meurer, T., Zeitz, M.: K-summable power series as a design tool for feedforward control of diffusion-convection-reaction systems. In: Proc. 6th IFAC Symposium Nonlinear Control Systems (NOLCOS 2004), Stuttgart (D), pp. 149–154 (2004)

    Google Scholar 

  68. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  69. Young, R.: An Introduction to Nonharmonic Fourier Series. Academic Press, San Diego (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Meurer .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meurer, T. (2013). Spectral Approach for Time–Invariant Systems with General Spatial Domain. In: Control of Higher–Dimensional PDEs. Communications and Control Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30015-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30015-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30014-1

  • Online ISBN: 978-3-642-30015-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics