Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 569 Accesses

Abstract

In this Chapter I will describe the physics that stands behind the problem of CR propagation. Since the battlefield in which CR propagation takes place is the interstellar medium (ISM) of our Galaxy, I will first present a complete description of the Galactic environment and its components, with particular attention to the interstellar gas, the magnetic field (related to CR diffusion and spallation) and the distribution of pulsars and Supernova Remnants (related to CR origin); I will point out the deep interplay that exist between these components that continuously interact one another: the gas triggers star formation, massive stars quickly generate Supernova explosions that accelerate CRs, the gas returns back again in the ISM and the released energy triggers the turbulence that is responsible of the CR random walk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The \({\rm H }\) line corresponds to a transition between \(n=3\) and \(n=2\).

  2. 2.

    A quantitative description of these phenomena is based on magneto-hydro-dynamics (MHD). From the MHD equation of motion:

    $$\begin{aligned} \rho \left[ \frac{\partial \vec {v}}{\partial t} + (\vec {v} \cdot \vec {\nabla }) \vec {v} \right] = -\vec {\nabla } p + \rho \vec {g} + \frac{1}{4\pi } (\vec {\nabla } \times \vec {B}) \times \vec {B} \end{aligned}$$
    (2.1)

    it is possible to derive the Virial theorem:

    $$\begin{aligned} \frac{1}{2} \ddot{I} = 2 ( T - T_s ) + M + W \end{aligned}$$
    (2.2)

    where

    • \(I\) it the momentum of inertia

    • \(T\), is defined by the following equation: \(T \equiv \int _V{\left( \frac{3}{2} P_{th} + \frac{1}{2} \rho v^2 \right) {\rm d}V}\) and represents the internal kinetic energy, with a random microscopic component (thermal energy) and a macroscopic contribution (due to turbulent motions) that is often dominant.

    • \(T_s\), defined by: \(T_s \equiv \frac{1}{2} \oint _S{P_{ext} \vec {r} \cdot {\rm d}{\vec {S}}}\) takes into account the pressure of the external medium that surrounds the cloud.

    • \(W\) is the gravitational energy.

    • \(M\) is the magnetic term: \(M = \frac{1}{8 \pi } \int {(B^2-B_0^2){\rm d}V}\), where \(B_0\) is the intensity of the field present in the surrounding medium.

    According to which term prevails, the cloud or a part of it is considered self-gravitating (if the internal pressure due to thermal and turbulent motions is balanced by the gravitational field of the cloud itself) or pressure-confined (if the external medium with its pressure does the same job). Star-forming clouds or clumps are generally self-gravitating. When the density gets too high, due to an external perturbation, the gravitational term becomes dominant and the cloud undergoes a collapse, which is the first step of star formation.

References

  1. E. Fermi, On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949)

    Article  ADS  MATH  Google Scholar 

  2. K.M. Ferrière, The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001)

    Article  ADS  Google Scholar 

  3. J.H. Oort. A summary and assessment of current 21-cm results concerning spiral and disk structures in our galaxy. In URSI Symposium 1: Paris Symposium on Radio Astronomy, ed. by R.N. Bracewell, vol. 9 of IAU Symposium 1959. p. 409

    Google Scholar 

  4. R.A. Benjamin. The spiral structure of the galaxy: something old, something new... In Massive Star Formation: Observations Confront Theory, 2008. ed. by H. Beuther, H. Linz, T. Henning. Astronomical Society of the Pacific Conference Series. vol. 387, p. 375

    Google Scholar 

  5. E. Churchwell, B.L. Babler, M.R. Meade, B.A. Whitney, R. Benjamin, R. Indebetouw, C. Cyganowski, T.P. Robitaille, M. Povich, C. Watson, S. Bracker, The spitzer/GLIMPSE surveys: a new view of the milky way. Publ. Astron. Soc. Pac. 121, 213–230 (2009)

    Article  ADS  Google Scholar 

  6. T.M. Dame, H. Ungerechts, R.S. Cohen, E.J. de Geus, I.A. Grenier, J. May, D.C. Murphy, L.-A. Nyman, P. Thaddeus, A composite CO survey of the entire milky way. Astrophys. J. 322, 706–720 (1987)

    Article  ADS  Google Scholar 

  7. L. Bronfman, R.S. Cohen, H. Alvarez, J. May, P. Thaddeus, A CO survey of the southern milky way—the mean radial distribution of molecular clouds within the solar circle. Astrophys. J. 324, 248–266 (1988)

    Article  ADS  Google Scholar 

  8. H. Nakanishi, Y. Sofue, Three-Dimensional distribution of the ISM in the milky way galaxy:II. The molecular gas disk. Publ. Astron. Soc. Jpn. 58, 847–860 (2006)

    ADS  Google Scholar 

  9. M. Pohl, P. Englmaier, N. Bissantz, Three-Dimensional distribution of molecular gas in the barred milky way. Astrophys. J. 677, 283–291 (2008)

    Article  ADS  Google Scholar 

  10. R.J. Reynolds, Ionized disk/halo gas—insight from optical emission lines and pulsar dispersion measures. ed. by H. Bloemen. IAU Symposium, 1991. The Interstellar Disk-Halo Connection in Galaxies, vol. 144, pp. 67–76

    Google Scholar 

  11. J.M. Cordes, T.J.W. Lazio, NE2001.I. A new model for the galactic distribution of free electrons and its fluctuations. ArXiv Astrophysics e-prints, 2002

    Google Scholar 

  12. C.F. McKee, The dynamical structure and evolution of giant molecular clouds. In NATO ASIC Proceedings of 540: The Origin of Stars and Planetary Systems, 1999. ed. by C.J. Lada, N.D. Kylafis. p. 29

    Google Scholar 

  13. D. Chappell, J. Scalo, Multifractal scaling, geometrical diversity, and hierarchical structure in the cool interstellar medium. Astrophys. J. 551, 712–729 (2001)

    Article  ADS  Google Scholar 

  14. N. Sánchez, E.J. Alfaro, E. Pérez, Determining the fractal dimension of the interstellar medium. In Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 35 of Revista Mexicana de Astronomica y Astrofisca, 27, 76–77 (2009)

    Google Scholar 

  15. I. Yusifov, I. Küçük, Revisiting the radial distribution of pulsars in the galaxy. Astron. Astrophys. 422, 545–553 (2004)

    Article  ADS  Google Scholar 

  16. A.A. Abdo et al. [Fermi collaboration]. Astrophys. J. Lett. 710, L92–L97 (2010)

    Article  ADS  Google Scholar 

  17. F. Aharonian, [H.E.S.S. Collaboration]. A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS. Astron. Astrophys. 449, 223–242 (2006)

    Article  ADS  Google Scholar 

  18. D.A. Green, A revised galactic supernova remnant catalogue. Bull. Astron. Soc. India 37, 45–61 (2009)

    ADS  Google Scholar 

  19. D.A. Green. A catalogue of galactic supernova remnants. http://www.mrao.cam.ac.uk/surveys/snrs/

  20. R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia telescope national facility pulsar catalogue. http://www.atnf.csiro.au/people/pulsar/psrcat/

  21. R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 129, 1993–2006 (2005)

    Article  ADS  Google Scholar 

  22. D.R. Lorimer, The galactic distribution of radio pulsars. In 35th COSPAR Scientific Assembly, 2004. ed. by J.-P. Paillé. vol. 35, p. 1321

    Google Scholar 

  23. X.H. Sun, W. Reich, A. Waelkens, T.A. Enßlin, Radio observational constraints on Galactic 3D-emission models. Astron. Astrophys. 477, 573–592 (2008)

    Article  ADS  Google Scholar 

  24. J.C. Brown, The magnetic field of the milky way galaxy. In Astronomical Society of the Pacific Conference, 2010. ed. by R. Kothes, T.L. Landecker, A.G. Willis. Astronomical Society of the Pacific Conference Series, vol. 438, p. 216

    Google Scholar 

  25. X.-H. Sun, W. Reich, The Galactic halo magneticfield revisited. Res. Astron. Astrophys. 10, 1287–1297 (2010)

    Article  ADS  Google Scholar 

  26. V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.S. Ptuskin, Astrophysics of Cosmic Rays, (North holland, Amsterdam, 1990)

    Google Scholar 

  27. A.N. Kolmogorov, The local structure of turbulence inincompressible viscous fluid for very large Reynolds numbers. Royal Soc. Lond. Proc. Ser. A 434, 9–13 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  29. J.W. Armstrong, B.J. Rickett, S.R. Spangler, Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995)

    Article  ADS  Google Scholar 

  30. J. Giacalone, J.R. Jokipii, The transport of cosmic rays across a turbulent magnetic field. Astrophys. J. 520, 204–214 (1999)

    Article  ADS  Google Scholar 

  31. A. Shalchi, R. Schlickeiser, Evidence for the nonlinear transport of Galactic cosmic rays. Astrophys. J. Lett. 626, L97–L99 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaggero, D. (2012). Cosmic Ray Diffusion in the Galaxy. In: Cosmic Ray Diffusion in the Galaxy and Diffuse Gamma Emission. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29949-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29949-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29948-3

  • Online ISBN: 978-3-642-29949-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics