Skip to main content

Value Function Approximation through Sparse Bayesian Modeling

  • Conference paper
Recent Advances in Reinforcement Learning (EWRL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7188))

Included in the following conference series:

Abstract

In this study we present a sparse Bayesian framework for value function approximation. The proposed method is based on the on-line construction of a dictionary of states which are collected during the exploration of the environment by the agent. A linear regression model is established for the observed partial discounted return of such dictionary states, where we employ the Relevance Vector Machine (RVM) and exploit its enhanced modeling capability due to the embedded sparsity properties. In order to speed-up the optimization procedure and allow dealing with large-scale problems, an incremental strategy is adopted. A number of experiments have been conducted on both simulated and real environments, where we took promising results in comparison with another Bayesian approach that uses Gaussian processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Bradtke, S.J., Barto, A.G.: Linear least-squares algorithms for temporal difference learning. Machine Learning 22, 33–57 (1996)

    MATH  Google Scholar 

  3. Engel, Y., Mannor, S., Meir, R.: Reinforcement learning with gaussian process. In: International Conference on Machine Learning, pp. 201–208 (2005)

    Google Scholar 

  4. Geist, M., Pietquin, O.: Kalman Temporal Differences. Journal of Artificial Intelligence Research 39, 483–532 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Inteligence Research 4, 237–285 (1996)

    Google Scholar 

  6. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine Learning Research 4, 1107–1149 (2003)

    MathSciNet  Google Scholar 

  7. Moore, A.: Variable resolution dynamic programming: Efficiently learning action maps in multivariate real-valued state-spaces. In: Machine Learning: Proceedings of the Eighth International Conference. Morgan Kaufmann (June 1991)

    Google Scholar 

  8. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press (2006)

    Google Scholar 

  9. Rummery, G.A., Niranjan, M.: On-line q-learning using connectionist systems. Tech. rep., Cambridge University Engineering Department (1994)

    Google Scholar 

  10. Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)

    Google Scholar 

  11. Seeger, M.: Bayesian Inference and Optimal Design for the Sparse Linear Model. Journal of Machine Learning Research 9, 759–813 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Singh, S., Sutton, R.S., Kaelbling, P.: Reinforcement learning with replacing eligibility traces. Machine Learning, 123–158 (1996)

    Google Scholar 

  13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  14. Taylor, G., Parr, R.: Kernelized value function approximation for reinforcement learning. In: International Conference on Machine Learning, pp. 1017–1024 (2009)

    Google Scholar 

  15. Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Tipping, M.E., Faul, A.C.: Fast marginal likelihood maximization for sparse bayesian models. In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics (2003)

    Google Scholar 

  17. Tzikas, D., Likas, A., Galatsanos, N.: Sparse Bayesian modeling with adaptive kernel learning. IEEE Trans. on Neural Networks 20(6), 926–937 (2009)

    Article  Google Scholar 

  18. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)

    MATH  Google Scholar 

  19. Xu, X., Hu, D., Lu, X.: Kernel-based least squares policy iteration for reinforcement learning. IEEE Transactions on Neural Networks 18(4), 973–992 (2007)

    Article  Google Scholar 

  20. Xu, X., Xie, T., Hu, D., Lu, X.: Kernel least-squares temporal difference learning. International Journal of Information Technology 11(9), 54–63 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tziortziotis, N., Blekas, K. (2012). Value Function Approximation through Sparse Bayesian Modeling. In: Sanner, S., Hutter, M. (eds) Recent Advances in Reinforcement Learning. EWRL 2011. Lecture Notes in Computer Science(), vol 7188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29946-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29946-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29945-2

  • Online ISBN: 978-3-642-29946-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics