Skip to main content

Häufige vaskuläre Hautveränderungen

  • Chapter
  • First Online:
  • 3171 Accesses

Zusammenfassung

Die Wellenlänge ist eine wichtige Einflussgröße für die Hämoglobinabsorption und die effektive Behandlungstiefe. Längere Wellenlängen sind besser für tiefere vaskuläre Hautveränderungen geeignet. Der Strahldurchmesser ist sowohl für die Reichweite als auch für die effektive Behandlungstiefe entscheidend. Größere Strahldurchmesser reichen tiefer. Die Absorptionsmaxima von Melanin und Hämoglobin sind sehr ähnlich. Der Pigmentierungs- und Bräunungsgrad des Patienten muss unbedingt beachtet werden. Obwohl die primäre Zielstruktur Oxyhämoglobin ist, sind Methämoglobin und Blutgerinnsel ebenfalls wichtige Zielstrukturen, besonders wenn mehrere Durchgänge und verschiedene Wellenlängen zum Einsatz kommen. Die Impulsdauer sollte der Größe der Zielstruktur entsprechen. Längere Impulsdauern sind am besten für größere, kürzere Pulsdauern besser für kleinere Blutgefäße geeignet. Bei der Behandlung von vaskulären Hautveränderungen muss vorsichtig mit hohen Dosierungen (1.064 nm) umgegangen werden, da das Risiko unkontrollierter thermischer Schädigungen besteht.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Adrian RM, Tanghetti EA (1998) Long pulse 532-nm laser treatment of facial telangietasias. Dermatol Surg 24:71–4

    CAS  PubMed  Google Scholar 

  2. Adrian RM, Tanghetti EA (1998) Long pulse 532-nm laser treatment of lower extremity telangiectasias. A clinical and histologic study. Lasers Surg Med 10:31

    Google Scholar 

  3. Adrian RM, Tanghetti EA (2007) Multicenter evaluation of cynergy multiplex laser treatment of leg veins. Lasers Surg Med Suppl 19:77

    Google Scholar 

  4. Barton JK, Vargas G, Pfefer TJ et al (1999) Laser fluence for permanent damage of cutaneous blood vessels. Photochem Photobiol 70:916–920

    Article  CAS  PubMed  Google Scholar 

  5. Barton JK, Hammer DX, Pfefer TJ et al (1999) Simultaneous irradiation and imaging of blood vessels during pulsed laser delivery. Lasers Surg Med 24:236–243

    Article  CAS  PubMed  Google Scholar 

  6. Barton JK, Frangineas G, Pummer H et al (2001) Cooperative phenomena in two-pulse, two-color laser photocoagulation of cutaneous blood vessels. Photochem Photobiol 73:642–650

    Article  CAS  PubMed  Google Scholar 

  7. Barton JK, Rollins A, Yazdanfar S et al (2001) Photothermal coagulation of blood vessels: a comparison of high speed optical coherence tomography and numerical modeling. Phys Med Biol 46:1665–1678

    Article  CAS  PubMed  Google Scholar 

  8. Bui AK, McClure RA, Chang J, Stoianovici C, Hirshburg J, Yeh AT et al (2009) Revisiting optical clearing with dimethyl sulfoxide (DMSO). Lasers Surg Med 41:142–148

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chang CJ, Hsiao YC, Mihm MC, Nelson JS (2008) Pilot study examining the combined use of pulsed dye laser and topical imiquimod versus laser alone for treatment of port wine stain birthmarks. Lasers Surg Med 40:605–610

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dierickx CC, Casparian JM, Venugopalan V, Farinelli WA, Anderson RR (1995) Thermal relaxation of port-wine stain vessels probed in vivo: the need for 1-10-millisecond laser pulse treatment. J Invest Dermatol 105:709–714

    Article  CAS  PubMed  Google Scholar 

  11. Geronemus RG, Quintana AT, Lou W, Kauvar ANB (2000) High fluence modified pulsed dye laser photocoagulation with dynamic cooling of port wine stains in infancy. Arch Dermatol 136:942–943

    Article  CAS  PubMed  Google Scholar 

  12. Gu Y, Huang NY, Liang J, Pan YM, Liu FG (2007) Clinical study of 1,949 cases of port wine stains treated with vascular photodynamic therapy. Ann Dermatol Venereol 134:241–244

    Article  CAS  PubMed  Google Scholar 

  13. Kauvar AN, Lou WW (2000) Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol 136:1371–1375

    CAS  PubMed  Google Scholar 

  14. Kauvar ANB, Grossman MC, Bernstein LJ, Kovacs SO, Quintana AT, Geronemus RG (1998) The effects of cryogen spray cooling on pulse dye laser treatment of vascular lesions. Lasers Surg Med Suppl 10:211

    Google Scholar 

  15. Meijs MM, Blok FAA, De Rie MA (2006) Treatment of poikiloderma of civatte with the pulsed dye laser: a series of patients with severe depigmentation. J Eur Acad Dermatol 20:1248–1251

    Article  CAS  Google Scholar 

  16. Mirkov M, Sherr EA, Sierra RA, Lloyd JR, Tanghetti EA (2006) Analytical modeling of laser pulse heating of embedded biological targets: an application to cutaneous vascular lesions. J Appl Phys 99:114701.1–114701.15

    Article  Google Scholar 

  17. Nelson SJ (2009) Caroline & William Mark Memorial Award Lecture. ASLMS

    Google Scholar 

  18. Orenstein A, Nelson JS, Liaw LH, Kaplan R, Kimel S, Berns MW (1990) Photochemotherapy of hypervascular dermal lesions: an alternative to photothermal therapy? Lasers Surg Med 10:334–343

    Article  CAS  PubMed  Google Scholar 

  19. Ozturk S, Hoopman J, Brown SA, Nojima K, Saboorian H, Acikel C et al (2004) A useful algorithm for determining fluence and pulse width for vascular targets using 1,064 nm Nd:YAG laser in and animal model. Lasers Surg Med 34:420–5

    Article  PubMed  Google Scholar 

  20. Parlette EC, Groff WF, Kinshella MJ, Domankevitz Y, O’Neill J, Ross EV (2006) Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser. Lasers Surg Med 38:98–105

    Article  PubMed  Google Scholar 

  21. Parrish JA, Anderson RR (1981) Modification of the optical properties of psoriatic tissue. Psoriasis Proceedings of the Third International Symposium 1981, S 415–416

    Google Scholar 

  22. Parrish JA, Momtaz TK, Paul BS, Tanghetti EA, Stern RS (1981) Maximizing ultraviolet phototherapy of psoriasis:clinical studies. Psoriasis Proceedings of the Third International Symposium 1981, S 413–4

    Google Scholar 

  23. Randeberg LL, Bonesronning JH, Dalaker M, Nelson JS, Svaasand LO (2004) Methemoglobin formation during laser induced photothermolysis of vascular skin lesions. Lasers Surg Med 34:414–9

    Article  CAS  PubMed  Google Scholar 

  24. Raulin C, Greve B, Grema H (2003) IPL technology: a review. Lasers Surg Med 32:78–87

    Article  PubMed  Google Scholar 

  25. Ross EV, Meehan KJ, Gilbert S, Domankevitz Y (2009) Optimal pulse durations for the treatment of leg telangiectasias with an Alexandrite. Lasers Surg Med 41:104–109

    Article  CAS  PubMed  Google Scholar 

  26. Sarradet DM, Hussain M, Goldberg DJ (2003) Millisecond 1064-nm neodymium:YAG laser treatment of facial telangiectases. Dermatol Surg 29:56–58

    PubMed  Google Scholar 

  27. Tanghetti EA (2000) The use of refrigerated air or contact cooling for the treatment of leg veins with a 755 nm 20 and 40 msec laser. Laser Surg Med 12:112

    Google Scholar 

  28. Tanghetti EA, Sherr EA, Sierra R, Mirkov M (2006) The effects of pulse dye laser double-pass treatment intervals on depth of vessel coagulation. Lasers Surg Med 38:16–21

    Article  PubMed  Google Scholar 

  29. Tremaine AM, Ortiz YC, Elkeeb L, Choi B, Kelly K (2009) Combined therapy for enhanced microvascular destruction in port-wine stains:pulsed dye laser photothermolysis and imiquimod. Lasers Surg Med Suppl 21: 63

    Google Scholar 

  30. Waldorf HA, Alster TS, McMillan K, Kauvar ANB, Geronemus RG, Nelson JS (1997) Effect of dynamic cooling on 585-nm pulsed dye laser treatment of port-wine stain birthmarks. Dermatol Surg 23:657–662

    CAS  PubMed  Google Scholar 

  31. Weiss RA, Goldman MP, Weiss MA (2000) Treatment of poikiloderma of civatte with an intense pulsed light source. Dermatol Surg 26:823–828

    Article  CAS  PubMed  Google Scholar 

  32. Adrian RM, Griffin L, Spargo A (2000) clinical csomparison of 810 nm diode and long pulsed 1064 nm neodymium:YAG laser in the treatment of leg veins. Lasers Surg Med Suppl 12:113

    Google Scholar 

  33. Tanghetti EA, Sherr E, Sierra R, Mirkov M (2005) Sequential 595 nm, 1064 nm laser treatment for blebbed portwine stains and leg veins. Lasers Surg Med Suppl 17:249

    Google Scholar 

  34. Tanghetti EA (2003) Extended pulse format dye laser and its effects on therapeutic efficacy. Lasers Surg Med 15:95

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emil Tanghetti Prof. Dr. , Mirko Mirkov Dr. or Rafael A. Sierra Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tanghetti, E., Mirkov, M., Sierra, R.A. (2013). Häufige vaskuläre Hautveränderungen. In: Raulin, C., Karsai, S. (eds) Lasertherapie der Haut. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29910-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29910-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29909-4

  • Online ISBN: 978-3-642-29910-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics