Skip to main content

Protein Secretion Systems of Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

Corynebacterium glutamicum exhibits numerous ideal intrinsic attributes as a protein factory, including particularly the secretion of a limited number and quantities of endogenous proteins, a very low level of extracellular protease activity, and the presence of two different native protein secretion mechanisms that have been demonstrated to drive the excretion of homologous and heterologous proteins (the general secretory pathway and the twin-arginine pathway). Moreover, it is capable of glycosylation, a property that opens the possibility to manufacture humanized proteins in addition to industrial enzymes. What is more, efficient signal peptides and prodomain regions have already been identified in this bacterium together with zymogen activation protocols. Similarly, surface expression was demonstrated by successfully decorating the surface of C. glutamicum with α-amylase. However, the technology of corynebacterial host vector systems for protein production is still emerging since only a limited number of proteins have been produced to this date with this organism. The construction in optimized strains of optimized secretion vectors that are stable and in high copy numbers and that combine a strong and controllable promoter with efficient translation stabilization region, secretion and maturation signals remains to be achieved. Likewise, the fundamental biology underlying protein secretion in Corynebacteria, and the definition of the capabilities of this novel protein secretion system and its limitations need to be defined further in order to bring to the biotechnological practitioner an additional technological option for industrial enzymes and pharmaceutical biologics manufacturing. Results attained to date, however, demonstrate the strong potential of Corynebacteria for protein manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ, Bitter W (2007) Type VII secretion–mycobacteria show the way. Nat Rev Microbiol 5:883–891

    PubMed  CAS  Google Scholar 

  • Adham SA, Campelo AB, Ramos A, Gil JA (2001a) Construction of a xylanase-producing strain of Brevibacterium lactofermentum by stable integration of an engineered xysA gene from Streptomyces halstedii JM8. Appl Environ Microbiol 67:5425–5430

    PubMed  CAS  Google Scholar 

  • Adham SA, Honrubia P, Díaz M, Fernández-Abalos JM, Santamaría RI, Gil JA (2001b) Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch Microbiol 177:91–97

    PubMed  CAS  Google Scholar 

  • Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA, Yu YK (2005) Protein database searches using compositionally adjusted substitution matrices. FEBS J 272:5101–5109

    PubMed  CAS  Google Scholar 

  • Amon J, Lüdke A, Titgemeyer F, Burkovski A (2008) General and regulatory proteolysis in Corynebacteria. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Wymondham

    Google Scholar 

  • Anonymous (2008) Enzymes for industrial applications. BCC Research, Wellesley, MA

    Google Scholar 

  • Anonymous (2009a) The bioeconomy to 2030. Organisation for Economic Co-operation and Development, Paris, France

    Google Scholar 

  • Anonymous (2009b) World enzymes: industry study with forecasts for 2013 & 2018. The Freedonia Group, Cleveland, OH

    Google Scholar 

  • Anonymous (2009c) World markets for fermentation ingredients

    Google Scholar 

  • Anonymous (2010a) The future of the biologicals market. Business Insights, London, UK

    Google Scholar 

  • Anonymous (2010b) Proteins drugs: a global strategic business report. Global Industry Analysts, Inc, San Jose, CA

    Google Scholar 

  • Awang GM, Jones GA, Ingledew WM (1988) The acetone-butanol-ethanol fermentation. Crit Rev Microbiol 15(Suppl 1):S33–S67

    PubMed  Google Scholar 

  • Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaran K (2006) A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 188:2761–2773

    PubMed  CAS  Google Scholar 

  • Barreiro C, Gonzalez-Lavado E, Martin JF (2001) Organization and transcriptional analysis of a six-gene cluster around the rplK-rplA operon of Corynebacterium glutamicum encoding the ribosomal proteins L11 and L1. Appl Environ Microbiol 67:2183–2190

    PubMed  CAS  Google Scholar 

  • Barrett AJ, Rawlings ND (1995) Families and clans of serine peptidases. Arch Biochem Biophys 318:247–250

    PubMed  CAS  Google Scholar 

  • Bayan N, Houssin C, Chami M, Leblon G (2003) Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 104:55–67

    PubMed  CAS  Google Scholar 

  • Benabdesselem C, Barbouche MR, Jarboui MA, Dellagi K, Ho JL, Fathallah DM (2007) High level expression of recombinant Mycobacterium tuberculosis culture filtrate protein CFP32 in Pichia pastoris. Mol Biotechnol 35:41–49

    PubMed  CAS  Google Scholar 

  • Benninga H (1990) A history of lactic acid making. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • Berens S, Kalinowski J, Pühler A (2002) Corynebacterium glutamicum strain with enhanced secretion activity, USA. European Patent EP1280927

    Google Scholar 

  • Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35:260–274

    PubMed  CAS  Google Scholar 

  • Billman-Jacobe H, Hodgson AL, Lightowlers M, Wood PR, Radford AJ (1994) Expression of ovine gamma interferon in Escherichia coli and Corynebacterium glutamicum. Appl Environ Microbiol 60:1641–1645

    PubMed  CAS  Google Scholar 

  • Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A (1995) Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl Environ Microbiol 61:1610–1613

    PubMed  CAS  Google Scholar 

  • Boekhorst J, de Been MW, Kleerebezem M, Siezen RJ (2005) Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol 187:4928–4934

    PubMed  CAS  Google Scholar 

  • Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, Venema G, Bron S, van Dijl JM (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl Environ Microbiol 65:2934–2941

    PubMed  CAS  Google Scholar 

  • Bozell JJ (2008) Feedstocks for the future – biorefinery production of chemicals from renewable carbon. Clean 36:641–647

    CAS  Google Scholar 

  • Brand S, Niehaus K, Puhler A, Kalinowski J (2003) Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Arch Microbiol 180:33–44

    PubMed  CAS  Google Scholar 

  • Brüser T (2007) The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production. Appl Microbiol Biotechnol 76:35–45

    PubMed  Google Scholar 

  • Cadenas RF, Gil JA, Martín JF (1992) Expression of Streptomyces genes encoding extracellular enzymes in Brevibacterium lactofermentum: secretion proceeds by removal of the same leader peptide as in Streptomyces lividans. Appl Microbiol Biotechnol 38:362–369

    PubMed  CAS  Google Scholar 

  • Caspers M, Freudl R (2008) Corynebacterium glutamicum possesses two secA homologous genes that are essential for viability. Arch Microbiol 189:605–610

    PubMed  CAS  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    PubMed  CAS  Google Scholar 

  • Chiba Y, Jigami Y (2007) Production of humanized glycoproteins in bacteria and yeasts. Curr Opin Chem Biol 11:670–676

    PubMed  CAS  Google Scholar 

  • Choi JH, Keum KC, Lee SY (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci 61:876–885

    CAS  Google Scholar 

  • Collier RJ, Cole HA (1969) Diphtheria toxin subunit active in vitro. Science 164:1179–1181

    PubMed  CAS  Google Scholar 

  • Connolly T, Gilmore R (1989) The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57:599–610

    PubMed  CAS  Google Scholar 

  • Cristóbal S, de Gier JW, Nielsen H, von Heijne G (1999) Competition between Sec- and Tat-dependent protein translocation in Escherichia coli. EMBO J 18:2982–2990

    PubMed  Google Scholar 

  • Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2003) Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl Environ Microbiol 69:3011–3044

    PubMed  CAS  Google Scholar 

  • Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2004) High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. J Biotechnol 110:219–226

    PubMed  CAS  Google Scholar 

  • Date M, Itaya H, Matsui H, Kikuchi Y (2006) Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett Appl Microbiol 42:66–70

    PubMed  CAS  Google Scholar 

  • Delaunay S, Gourdon P, Lapujade P, Mailly E, Oriol E, Engasser JM, Lindley ND, Goergen JL (1999) An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum. Enzyme Microb Technol 25:762–768

    CAS  Google Scholar 

  • Demain AL (2000) Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18:499–514

    PubMed  CAS  Google Scholar 

  • Demain AL (2007) The business of biotechnology. Ind Biotechnol 3:269–283

    Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    PubMed  CAS  Google Scholar 

  • Desvaux M, Dumas E, Chafsey I, Hébraud M (2006) Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 256:1–15

    PubMed  CAS  Google Scholar 

  • Díaz M, Adham SA, Ramón D, Gil JA, Santamaria RI (2004) Streptomyces lividans and Brevibacterium lactofermentum as heterologous hosts for the production of X22 xylanase from Aspergillus nidulans. Appl Microbiol Biotechnol 65:401–406

    PubMed  Google Scholar 

  • Dilks K, Rose RW, Hartmann E, Pohlschroder M (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:1478–1483

    PubMed  CAS  Google Scholar 

  • Dougan DA, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59:1607–1616

    PubMed  CAS  Google Scholar 

  • Dougan DA, Truscott KN, Zeth K (2010) The bacterial N-end rule pathway: expect the unexpected. Mol Microbiol 76:545–558

    PubMed  CAS  Google Scholar 

  • Drazek ES, Hammack CA, Schmitt MP (2000) Corynebacterium diphtheriae genes required for acquisition of iron from haemin and haemoglobin are homologous to ABC haemin transporters. Mol Microbiol 36:68–84

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    PubMed  CAS  Google Scholar 

  • Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 52:285–302

    PubMed  CAS  Google Scholar 

  • Engels S, Ludwig C, Schweitzer JE, Mack C, Bott M, Schaffer S (2005) The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 57:576–591

    PubMed  CAS  Google Scholar 

  • Festel G (2010) Industrial biotechnology: market size, company types, business models, and growth strategies. Ind Biotechnol April:88–94

    Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology – a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    PubMed  CAS  Google Scholar 

  • Geisseler D, Horwath WR (2008) Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol Biochem 40:3040–3048

    CAS  Google Scholar 

  • Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss R 3rd (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15:29–34

    PubMed  CAS  Google Scholar 

  • Gilbert M, Morosoli R, Shareck F, Kluepfel D (1995) Production and secretion of proteins by Streptomycetes. Crit Rev Biotechnol 15:13–39

    PubMed  CAS  Google Scholar 

  • Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC (2005) The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci USA 102:10482–10486

    PubMed  CAS  Google Scholar 

  • González-Zamorano M, Mendoza-Hernández G, Xolalpa W, Parada C, Vallecillo AJ, Bigi F, Espitia C (2009) Mycobacterium tuberculosis glycoproteomics based on ConA-lectin affinity capture of mannosylated proteins. J Proteome Res 8:721–733

    PubMed  Google Scholar 

  • Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1:164–186

    PubMed  CAS  Google Scholar 

  • Hale WJ (1934) The Farm Chemurgic. Stratford, Boston, MA

    Google Scholar 

  • Hanquier J, Sorlet Y, Desplancq D, Baroche L, Ebtinger M, Lefèvre JF, Pattus F, Hershberger CL, Vertès AA (2003) A single mutation in the activation site of bovine trypsinogen enhances its accumulation in the fermentation broth of the yeast Pichia pastoris. Appl Environ Microbiol 69:1108–1113

    PubMed  CAS  Google Scholar 

  • Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D, Pühler A, Kalinowski J (2006a) The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology 152:923–935

    PubMed  CAS  Google Scholar 

  • Hansmeier N, Chao TC, Pühler A, Tauch A, Kalinowski J (2006b) The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032. Proteomics 6:233–250

    PubMed  CAS  Google Scholar 

  • Hartmann M, Barsch A, Niehaus K, Pühler A, Tauch A, Kalinowski J (2004) The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. Arch Microbiol 182:299–312

    PubMed  CAS  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    PubMed  CAS  Google Scholar 

  • Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Pühler A, Bendt AK, Krämer R, Burkovski A (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723

    PubMed  CAS  Google Scholar 

  • Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisáková V, Pátek M, Kalinowski J, Brune I, Pühler A, Tauch A (2005) Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71:3255–3268

    PubMed  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    PubMed  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004a) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    PubMed  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004b) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    PubMed  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004c) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    PubMed  CAS  Google Scholar 

  • Inui M, Vertès AA, Yukawa H (2010) Advanced fermentation technologies. In: Vertès AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, Chichester, UK, pp 311–330

    Google Scholar 

  • Itaya H, Kikuchi Y (2008) Secretion of Streptomyces mobaraensis pro-transglutaminase by coryneform bacteria. Appl Microbiol Biotechnol 78:621–625

    PubMed  CAS  Google Scholar 

  • Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298

    PubMed  CAS  Google Scholar 

  • Jenal U, Hengge-Aronis R (2003) Regulation by proteolysis in bacterial cells. Curr Opin Microbiol 6:163–172

    PubMed  CAS  Google Scholar 

  • Jo SJ, Maeda M, Ooi T, Taguchi S (2006) Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. J Biosci Bioeng 102:233–236

    PubMed  CAS  Google Scholar 

  • Joliff G, Mathieu L, Hahn V, Bayan N, Duchiron F, Renaud M, Schechter E, Leblon G (1992) Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: the deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex. Mol Microbiol 6:2349–2362

    PubMed  CAS  Google Scholar 

  • Kakeshita H, Oguro A, Amikura R, Nakamura K, Yamane K (2000) Expression of the ftsY gene, encoding a homologue of the alpha subunit of mammalian signal recognition particle receptor, is controlled by different promoters in vegetative and sporulating cells of Bacillus subtilis. Microbiology 146(Pt 10):2595–2603

    PubMed  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    PubMed  CAS  Google Scholar 

  • Kalinowski J, Wolters D, Poetsch A (2008) Proteomics of Corynebacterium glutamicum and other Corynebacteria. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Norfolk, pp 55–77

    Google Scholar 

  • Kana BD, Mizrahi V (2010) Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. FEMS Immunol Med Microbiol 58:39–50

    PubMed  CAS  Google Scholar 

  • Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428

    PubMed  CAS  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062

    PubMed  CAS  Google Scholar 

  • Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B (2006) Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol 14:271–276

    PubMed  CAS  Google Scholar 

  • Kikuchi H (2006) Heterologous protein secretion by using Corynebacterium glutamicum. Biosci Ind 64:383–386

    CAS  Google Scholar 

  • Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H (2003) Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-Like protease from Streptomyces albogriseolus. Appl Environ Microbiol 69:358–366

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Date M, Itaya H, Matsui K, Wu LF (2006) Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol 72:7183–7192

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF (2008) Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 78:67–74

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF (2009) TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion. Appl Environ Microbiol 75:603–607

    PubMed  CAS  Google Scholar 

  • King D (2010) The future of industrial biorefineries. World Economic Forum, Geneva, Switzerland

    Google Scholar 

  • Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102:583–597

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Fugono N, Asai Y, Inui M, Vertès AA, Kurusu Y, Yukawa H (1994) Cloning and sequencing of the secY homolog from coryneform bacteria. Gene 139:99–103

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Asai Y, Yukawa H (1998) Cloning, sequencing, and characterization of the secE homolog from coryneform bacteria. Recent Res Dev Microbiol 2:429–435

    CAS  Google Scholar 

  • Kobayashi M, Fugono N, Asai Y, Yukawa H (1999) Cloning and nucleotide sequencing of the secA gene from coryneform bacteria. Genet Anal 15:9–13

    PubMed  CAS  Google Scholar 

  • Koberling O, Freudl R (2007) Bacteria with increased levels of protein secretion, nucleotide sequences coding for a SecA protein with increased levels of protein secretion, and methods for producing proteins. US Patent 7,807,808, 10 Oct 2010

    Google Scholar 

  • Kumagai H (2000) Microbial production of amino acids in Japan. In: Scheper T (ed) Advances in biochemical engineering, vol 69. Springer, Berlin, Germany, pp 71–85

    Google Scholar 

  • Kurusu Y, Satoh Y, Inui M, Kohama K, Kobayashi M, Terasawa M, Yukawa H (1991) Identification of plasmid partition function in coryneform bacteria. Appl Environ Microbiol 57:759–764

    PubMed  CAS  Google Scholar 

  • Langella P, Le Loir Y (1999) Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system. Braz J Med Biol Res 32:191–198

    PubMed  CAS  Google Scholar 

  • Le Loir Y, Nouaille S, Commissaire J, Brétigny L, Gruss A, Langella P (2001) Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67:4119–4127

    PubMed  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    PubMed  CAS  Google Scholar 

  • Li W, Zhou X, Lu P (2004) Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res Microbiol 155:605–610

    PubMed  CAS  Google Scholar 

  • Li SY, Chang BY, Lin SC (2006) Coexpression of TorD enhances the transport of GFP via the Tat pathway. J Biotechnol 122:412–421

    PubMed  CAS  Google Scholar 

  • Liebl W (2001) Corynebacterium – nonmedical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria: archaea and bacteria: firmicutes, actinomycetes, vol 3. Springer, New York, pp 796–818

    Google Scholar 

  • Liebl W (2005) Corynebacterium taxonomy. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FL, pp 9–34

    Google Scholar 

  • Liebl W, Sinskey AJ (1988) Molecular cloning and nucleotide sequence of a gene involved in the production of extracellular DNase by Corynebacterium glutamicum. In: Ganesan AT, Hoch JA (eds) Genetics and biotechnology of Bacilli, vol 2. Academic, New York, NY, pp 383–388

    Google Scholar 

  • Liebl W, Sinskey AJ, Schleifer KH (1992) Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J Bacteriol 174:1854–1861

    PubMed  CAS  Google Scholar 

  • Mahne M, Tauch A, Pühler A, Kalinowski J (2006) The Corynebacterium glutamicum gene pmt encoding a glycosyltransferase related to eukaryotic protein-O-mannosyltransferases is essential for glycosylation of the resuscitation promoting factor (Rpf2) and other secreted proteins. FEMS Microbiol Lett 259:226–233

    PubMed  CAS  Google Scholar 

  • Malumbres M, Gil JA, Martín JF (1993) Codon preference in corynebacteria. Gene 134:15–24

    PubMed  CAS  Google Scholar 

  • Marquardt W, Harwardt A, Hechinger M, Kraemer K, Viell J, Voll A (2010) The biorenewables opportunity – toward next generation process and product systems. AICHE J 56:2228–2235

    CAS  Google Scholar 

  • Meissner D, Vollstedt A, van Dijl JM, Freudl R (2007) Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. Appl Microbiol Biotechnol 76:633–642

    PubMed  CAS  Google Scholar 

  • Muffler A, Bettermann S, Haushalter M, Horlein A, Neveling U, Schramm M, Sorgenfrei O (2002) Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol 98:255–268

    PubMed  CAS  Google Scholar 

  • Muller M (2005) Twin-arginine-specific protein export in Escherichia coli. Res Microbiol 156:131–136

    PubMed  Google Scholar 

  • Nadkarni MA, Pandley VN, Pradhan DS (1993) An invertase with unusual properties secreted by sucrose-grown cells of Corynebacterium murisepticum. Indian J Biochem Biophys 30:156–159

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Nishio Y, Ikeo K, Gojobori T (2003) The genome stability in Corynebacterium species due to lack of the recombinational repair system. Gene 317:149–155

    PubMed  CAS  Google Scholar 

  • Nakashima N, Mitani Y, Tamura T (2005) Actinomycetes as host cells for production of recombinant proteins. Microb Cell Fact 4:7

    PubMed  Google Scholar 

  • Nakata K, Inui M, Kos P, Vertès AA, Yukawa H (2004) Vectors for genetic engineering of Corynebacteria. In: Saha BC (ed) Fermentation biotechnology, vol 862, ACS symposium series. American Chemical Society, Washington, DC, pp 175–191

    Google Scholar 

  • Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229

    PubMed  CAS  Google Scholar 

  • Nešvera J, Pátek M (2008) Plasmids and promoters in Corynebacteria and their applications. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Norfolk, pp 113–154

    Google Scholar 

  • Nishimura T, Vertes AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897

    PubMed  CAS  Google Scholar 

  • Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579

    PubMed  CAS  Google Scholar 

  • Nouaille S, Morello E, Cortez-Peres N, Le Loir Y, Commissaire J, Gratadoux JJ, Poumerol E, Gruss A, Langella P (2006) Complementation of the Lactococcus lactis secretion machinery with Bacillus subtilis SecDF improves secretion of staphylococcal nuclease. Appl Environ Microbiol 72:2272–2279

    PubMed  CAS  Google Scholar 

  • Octave S, Thomas D (2009) Biorefinery: toward an industrial metabolism. Biochimie 91:659–664

    PubMed  CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    PubMed  CAS  Google Scholar 

  • Paradis FW, Warren RA, Kilburn DG, Miller RC Jr (1987) The expression of Cellulomonas fimi cellulase genes in Brevibacterium lactofermentum. Gene 61:199–206

    PubMed  CAS  Google Scholar 

  • Park JH, Lee SY, Kim TY, Kim HU (2008) Application of systems biology for bioprocess development. Trends Biotechnol 26:404–412

    PubMed  CAS  Google Scholar 

  • Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol 9:97–109

    PubMed  CAS  Google Scholar 

  • Pohlschroder M, Hartmann E, Hand NJ, Dilks K, Haddad A (2005) Diversity and evolution of protein translocation. Annu Rev Microbiol 59:91–111

    PubMed  CAS  Google Scholar 

  • Posey JE, Shinnick TM, Quinn FD (2006) Characterization of the twin-arginine translocase secretion system of Mycobacterium smegmatis. J Bacteriol 188:1332–1340

    PubMed  CAS  Google Scholar 

  • Puech V, Bayan N, Salim K, Leblon G, Daffé M (2000) Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85. Mol Microbiol 35:1026–1041

    PubMed  CAS  Google Scholar 

  • Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffé M (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382

    PubMed  CAS  Google Scholar 

  • Qian Y, Lee JH, Holmes RK (2002) Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae. J Bacteriol 184:4846–4856

    PubMed  CAS  Google Scholar 

  • Rama JM, Sandoval H, Pons ME, Lopez P, Martin JF, Espinosa M (1987) Deoxyribonucleases of non-pathogenic corynebacteria. FEMS Microbiol Lett 44:343–348

    CAS  Google Scholar 

  • Rezwan M, Grau T, Tschumi A, Sander P (2007) Lipoprotein synthesis in mycobacteria. Microbiology 153:652–658

    PubMed  CAS  Google Scholar 

  • Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73:2349–2353

    PubMed  CAS  Google Scholar 

  • Salim K, Haedens V, Content J, Leblon G, Huygen K (1997) Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl Environ Microbiol 63:4392–4400

    PubMed  CAS  Google Scholar 

  • Santini CL, Ize B, Chanal A, Muller M, Giordano G, Wu LF (1998) A novel Sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J 17:101–112

    PubMed  CAS  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2008) Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 81:691–699

    PubMed  CAS  Google Scholar 

  • Schaerlaekens K, Lammertyn E, Geukens N, de Keersmaeker S, Anné J, van Mellaert L (2004a) Comparison of the Sec and Tat secretion pathways for heterologous protein production by Streptomyces lividans. J Biotechnol 112:279–288

    PubMed  CAS  Google Scholar 

  • Schaerlaekens K, Van Mellaert L, Lammertyn E, Geukens N, Anné J (2004b) The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology 150:21–31

    PubMed  CAS  Google Scholar 

  • Schaffer S, Weil B, Nguyen VD, Dongmann G, Günther K, Nickolaus M, Hermann T, Bott M (2001) A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22:4404–4422

    PubMed  CAS  Google Scholar 

  • Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372

    PubMed  CAS  Google Scholar 

  • Schmitt MP, Talley BG, Holmes RK (1997) Characterization of lipoprotein IRP1 from Corynebacterium diphtheriae, which is regulated by the diphtheria toxin repressor (DtxR) and iron. Infect Immun 65:5364–5367

    PubMed  CAS  Google Scholar 

  • Screen SE, St Leger RJ (2000) Cloning, expression, and substrate specificity of a fungal chymotrypsin. Evidence for lateral gene transfer from an actinomycete bacterium. J Biol Chem 275:6689–6694

    PubMed  CAS  Google Scholar 

  • Sensabaugh SM (2007) Biological generics: a business case. J Generic Med 4:186–199

    Google Scholar 

  • Sharma R, Katoch M, Srivastava PS, Qazi GN (2009) Approaches for refining heterologous protein production in filamentous fungi. World J Microbiol Biotechnol 25:2083–2094

    CAS  Google Scholar 

  • Shimizu H, Hirasawa T (2006) Production of glutamate and glutamare-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch VF (ed) Amino acid biosynthesis, Microbiology monographs. Springer, Berlin, Germany

    Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    PubMed  Google Scholar 

  • Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055

    PubMed  CAS  Google Scholar 

  • Soual-Hoebeke E, de Sousa-D’Auria C, Chami M, Baucher MF, Guyonvarch A, Bayan N, Salim K, Leblon G (1999) S-layer protein production by Corynebacterium strains is dependent on the carbon source. Microbiology 145(Pt 12):3399–3408

    PubMed  CAS  Google Scholar 

  • Spitz PH (1988) Petrochemicals: the rise of an industry. Wiley, New York, NY

    Google Scholar 

  • Srivastava PS, Deb JK (2002) Construction of fusion vectors of Corynebacteria: expression of glutathione-s-transferase fusion protein in Corynebacterium acetoacidophilum ATCC 21476. FEMS Microbiol Lett 212:209–216

    PubMed  CAS  Google Scholar 

  • Srivastava P, Deb JK (2005) Gene expression systems in corynebacteria. Protein Expr Purif 40:221–229

    PubMed  CAS  Google Scholar 

  • Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755

    PubMed  CAS  Google Scholar 

  • Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H (2009) Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl Microbiol Biotechnol 82:491–500

    PubMed  CAS  Google Scholar 

  • Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes–example: amino acids. J Biotechnol 129:181–190

    PubMed  CAS  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007a) Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77:533–541

    PubMed  CAS  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007b) Production of L-Lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface. Appl Microbiol Biotechnol 74:1213–1220

    PubMed  CAS  Google Scholar 

  • Tateno T, Hatada K, Tanaka T, Fukuda H, Kondo A (2009) Development of novel cell surface display in Corynebacterium glutamicum using porin. Appl Microbiol Biotechnol 84:733–739

    PubMed  CAS  Google Scholar 

  • Tauch A (2005) Native plasmids of amino acid-producing bacteria. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. Taylor & Francis, Boca Raton, FL, pp 57–80

    Google Scholar 

  • Terasawa M, Inui M, Goto M, Shikata K, Imanari M, Yukawa H (1990) Living cell reaction process for L-isoleucine and L-valine production. J Ind Microbiol Biotechnol 5:289–293

    CAS  Google Scholar 

  • Tjalsma H, Noback MA, Bron S, Venema G, Yamane K, van Dijl JM (1997) Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. Constitutive and temporally controlled expression of different sip genes. J Biol Chem 272:25983–25992

    PubMed  CAS  Google Scholar 

  • Tjalsma H, Kontinen VP, Pragai Z, Wu H, Meima R, Venema G, Bron S, Sarvas M, van Dijl JM (1999) The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium Bacillus subtilis. Signal peptidase II is required for the efficient secretion of alpha-amylase, a non-lipoprotein. J Biol Chem 274:1698–1707

    PubMed  CAS  Google Scholar 

  • Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    PubMed  CAS  Google Scholar 

  • Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM (2004) Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68:207–233

    PubMed  CAS  Google Scholar 

  • Ton-That H, Schneewind O (2003) Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 50:1429–1438

    PubMed  CAS  Google Scholar 

  • Tsuchida Y, Kimura S, Suzuki N, Inui M, Yukawa H (2009) Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector. Appl Microbiol Biotechnol 81:1107–1115

    PubMed  CAS  Google Scholar 

  • Tsuchida Y, Kimura S, Suzuki N, Inui M, Yukawa H (2010) Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum. Appl Microbiol Biotechnol 87:1855–1866

    PubMed  CAS  Google Scholar 

  • Tsuge Y, Ogino H, Teramoto H, Inui M, Yukawa H (2008) Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J Bacteriol 190:8204–8214

    PubMed  CAS  Google Scholar 

  • Tufariello JM, Jacobs WR Jr, Chan J (2004) Individual Mycobacterium tuberculosis resuscitation-promoting factor homologues are dispensable for growth in vitro and in vivo. Infect Immun 72:515–526

    PubMed  CAS  Google Scholar 

  • van den Hombergh JP, van de Vondervoort PJ, Fraissinet-Tachet L, Visser J (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256–263

    PubMed  Google Scholar 

  • van Mellaert L, Anné J (1999) Protein secretion in Gram-positive bacteria with high GC-content. Recent Res Dev Microbiol 3:425–440

    Google Scholar 

  • van Wely KHM, Swaving J, Freudl R, Driessen AJM (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454

    PubMed  Google Scholar 

  • vanderVen BC, Harder JD, Crick DC, Belisle JT (2005) Export-mediated assembly of mycobacterial glycoproteins parallels eukaryotic pathways. Science 309:941–943

    PubMed  CAS  Google Scholar 

  • Vertès AA (2010) Axes of development in chemical and process engineering for converting biomass to energy. In: Vertès AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, Chichester, UK, pp 491–521

    Google Scholar 

  • Vertès AA, Soccary Ben Yochanan S (2010) Financing strategies for industrial-scale biofuel production and technology development start-ups. In: Vertès AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, Chichester, UK, pp 523–545

    Google Scholar 

  • Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1993) Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144:181–185

    PubMed  Google Scholar 

  • Vertès AA, Inui M, Yukawa H (2005) Manipulating corynebacteria, from individual genes to chromosomes. Appl Environ Microbiol 71:7633–7642

    PubMed  Google Scholar 

  • Vertès AA, Inui M, Yukawa H (2006) Implementing biofuels on a global scale. Nat Biotechnol 24:761–764

    PubMed  Google Scholar 

  • Vertès AA, Inui M, Yukawa H (2007) Alternative technologies for biotechnological fuel ethanol manufacturing. J Chem Technol Biotechnol 82:693–697

    Google Scholar 

  • Vertès AA, Inui M, Yukawa H (2008) Technological options for biological fuel ethanol. J Mol Microbiol Biotechnol 15:16–30

    PubMed  Google Scholar 

  • von Heijne G (1998) Life and death of a signal peptide. Nature 396(111):113

    Google Scholar 

  • Vrancken K, Anné J (2009) Secretory production of recombinant proteins by Streptomyces. Future Microbiol 4:181–188

    PubMed  CAS  Google Scholar 

  • Vrancken K, De Keersmaeker S, Geukens N, Lammertyn E, Anne J, Van Mellaert L (2007) pspA overexpression in Streptomyces lividans improves both Sec- and Tat-dependent protein secretion. Appl Microbiol Biotechnol 73:1150–1157

    PubMed  CAS  Google Scholar 

  • Vrancken K, Van Mellaert L, Anne J (2008) Characterization of the Streptomyces lividans PspA response. J Bacteriol 190:3475–3481

    PubMed  CAS  Google Scholar 

  • Walsh G (2005) Therapeutic insulins and their large-scale manufacture. Appl Microbiol Biotechnol 67:151–159

    PubMed  CAS  Google Scholar 

  • Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    PubMed  CAS  Google Scholar 

  • Wang P, Dalbey RE (2010) In vitro and in vivo approaches to studying the bacterial signal peptide processing. Methods Mol Biol 619:21–37

    PubMed  CAS  Google Scholar 

  • Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H (2009) Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155:741–750

    PubMed  CAS  Google Scholar 

  • Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163

    PubMed  CAS  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    PubMed  CAS  Google Scholar 

  • Werner RG (2004) Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol 113:171–182

    PubMed  CAS  Google Scholar 

  • Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310

    PubMed  CAS  Google Scholar 

  • Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschroder M, Palmer T (2006) The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci USA 103:17927–17932

    PubMed  CAS  Google Scholar 

  • Wilke D (1995) What should and what can biotechnology contribute to chemical bulk production? FEMS Microbiol Rev 16:89–100

    CAS  Google Scholar 

  • Wittmann C (2010) Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 120:21–49

    PubMed  CAS  Google Scholar 

  • Wu CH, Mulchandani A, Chen W (2008) Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol 16:181–188

    PubMed  CAS  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    PubMed  CAS  Google Scholar 

  • Yao W, Chu C, Deng X, Zhang Y, Liu M, Zheng P, Sun Z (2009) Display of alpha-amylase on the surface of Corynebacterium glutamicum cells by using NCgl1221 as the anchoring protein, and production of glutamate from starch. Arch Microbiol 191:751–759

    PubMed  CAS  Google Scholar 

  • Yuan J, Zweers JC, van Dijl JM, Dalbey RE (2010) Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 67:179–199

    PubMed  CAS  Google Scholar 

  • Yukawa H, Inui M, Vertès AA (2006) Genomes and genome-level engineering of amino acid-producing bacteria. In: Wendisch VF (ed) Amino acid biosynthesis, vol 5, Microbiology monographs. Springer, Berlin, Germany

    Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain A. Vertès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vertès, A.A. (2013). Protein Secretion Systems of Corynebacterium glutamicum . In: Yukawa, H., Inui, M. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29857-8_13

Download citation

Publish with us

Policies and ethics