Skip to main content

Fractal-Based Brain State Recognition from EEG in Human Computer Interaction

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 273))

Abstract

Real-time brain states recognition from Electroencephalogram (EEG) could add a new dimension in an immersive human-computer interaction. As EEG signal is considered to have a fractal nature, we proposed and developed a general fractal based spatio-temporal approach to brain states recognition including the concentration level, stress level, and emotion recognition. Our hypothesis is that changes of fractal dimension values of EEG over time correspond to the brain states changes. Overall brain state recognition algorithms were proposed and described. Fractal dimension values were calculated by the implemented Higuchi and Box-counting methods. Real-time subject-dependent classification algorithms based on threshold FD values calculated during a short training session were proposed and implemented. Based on the proposed real-time algorithms, neurofeedback games for concentration and stress management training such as “Brain Chi”, “Dancing Robot”, “Escape”, and “Apples”, and emotion-enabled applications such as emotion-enabled avatar, music therapy, and emotion-based search were designed and implemented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain. Oxford University Press (2006)

    Google Scholar 

  2. Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J.H., Kaiser, J.: Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: A comparison with methylphenidate. Applied Psychophysiology Biofeedback 28, 1–12 (2003)

    Article  Google Scholar 

  3. Gevensleben, H., Holl, B., Albrecht, B., Schlamp, D., Kratz, O., Studer, P., Wangler, S., Rothenberger, A., Moll, G.H., Heinrich, H.: Distinct eeg effects related to neurofeedback training in children with adhd: A randomized controlled trial. International Journal of Psychophysiology 74, 149–157 (2009)

    Article  Google Scholar 

  4. Thompson, L., Thompson, M., Reid, A.: Neurofeedback outcomes in clients with asperger’s syndrome. Applied Psychophysiology Biofeedback 35, 63–81 (2010)

    Article  Google Scholar 

  5. Kouijzer, M.E.J., van Schie, H.T., de Moor, J.M.H., Gerrits, B.J.L., Buitelaar, J.K.: Neurofeedback treatment in autism. preliminary findings in behavioral, cognitive, and neurophysiological functioning. Research in Autism Spectrum Disorders 4, 386–399 (2010)

    Article  Google Scholar 

  6. Saxby, E., Peniston, E.G.: Alpha-theta brainwave neurofeedback training: An effective treatment for male and female alcoholics with depressive symptoms. Journal of Clinical Psychology 51, 685–693 (1995)

    Article  Google Scholar 

  7. Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., Gruzelier, J.: The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology 47, 75–85 (2003)

    Article  Google Scholar 

  8. Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., Klimesch, W.: Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology Biofeedback 30, 1–10 (2005)

    Article  Google Scholar 

  9. Heinrich, H., Gevensleben, H., Strehl, U.: Annotation: Neurofeedback - train your brain to train behaviour. Journal of Child Psychology and Psychiatry and Allied Disciplines 48, 3–16 (2007)

    Article  Google Scholar 

  10. Davidson, P.R., Jones, R.D., Peiris, M.T.R.: Eeg-based lapse detection with high temporal resolution. IEEE Transactions on Biomedical Engineering 54, 832–839 (2007)

    Article  Google Scholar 

  11. Lin, C.T., Wu, R.C., Jung, T.P., Liang, S.F., Huang, T.Y.: Estimating driving performance based on eeg spectrum analysis. Eurasip Journal on Applied Signal Processing, 3165–3174 (2005)

    Google Scholar 

  12. Huang, R.S., Jung, T.P., Makeig, S.: Multi-scale eeg brain dynamics during sustained attention tasks. In: Proc. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, pp. IV1173–IV1176 (2007)

    Google Scholar 

  13. Lutsyuk, N.V., Eismont, E.V., Pavlenko, V.B.: Modulation of attention in healthy children using a course of eeg-feedback sessions. Neurophysiology 38, 389–395 (2006)

    Article  Google Scholar 

  14. Pop-Jordanov, J., Pop-Jordanova, N.: Neurophysical substrates of arousal and attention. Cognitive Processing 10, 71–79 (2009)

    Article  Google Scholar 

  15. Schier, M.A.: Changes in eeg alpha power during simulated driving: A demonstration. International Journal of Psychophysiology 37, 155–162 (2000)

    Article  Google Scholar 

  16. Wang, Q., Sourina, O., Nguyen, M.K.: Fractal dimension based algorithm for neurofeedback games. In: Proc. CGI 2010, p. SP25 (2010)

    Google Scholar 

  17. Wang, Q., Sourina, O., Nguyen, M.K.: EEG-based ”serious” games design for medical applications. In: Proc. 2010 Int. Conf. on Cyberworlds, Singapore, pp. 270–276 (2010)

    Google Scholar 

  18. Block, A., Von Bloh, W., Schellnhuber, H.J.: Efficient box-counting determination of generalized fractal dimensions. Physical Review A 42, 1869–1874 (1990)

    Article  MathSciNet  Google Scholar 

  19. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena 31, 277–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ishino, K., Hagiwara, M.: A feeling estimation system using a simple electroencephalograph. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp. 4204–4209 (2003)

    Google Scholar 

  21. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. IEEE Transactions on Information Technology in Biomedicine 14, 186–197 (2010)

    Article  Google Scholar 

  22. Schaaff, K.: EEG-based emotion recognition. PhD thesis, Universitat Karlsruhe, TH (2008)

    Google Scholar 

  23. Takahashi, K.: Remarks on emotion recognition from multi-modal bio-potential signals. In: IEEE International Conference on Industrial Technology, IEEE ICIT 2004, vol. 3, pp. 1138–1143 (2004)

    Google Scholar 

  24. Zhang, Q., Lee, M.: Analysis of positive and negative emotions in natural scene using brain activity and gist. Neurocomputing 72, 1302–1306 (2009)

    Article  Google Scholar 

  25. Chanel, G., Kronegg, J., Grandjean, D., Pun, T.: Emotion assessment: Arousal evaluation using EEG’s and peripheral physiological signals (2006)

    Google Scholar 

  26. Chanel, G., Kierkels, J.J.M., Soleymani, M., Pun, T.: Short-term emotion assessment in a recall paradigm. International Journal of Human Computer Studies 67, 607–627 (2009)

    Article  Google Scholar 

  27. Lin, Y.P., Wang, C.H., Wu, T.L., Jeng, S.K., Chen, J.H.: EEG-based emotion recognition in music listening: A comparison of schemes for multiclass support vector machine. In: Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, pp. 489–492 (2009)

    Google Scholar 

  28. Schaaff, K., Schultz, T.: Towards emotion recognition from electroencephalographic signals. In: 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, ACII 2009, pp. 1–6 (2009)

    Google Scholar 

  29. Khalili, Z., Moradi, M.H.: Emotion recognition system using brain and peripheral signals: Using correlation dimension to improve the results of eeg. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1571–1575 (2009)

    Google Scholar 

  30. Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based human emotion recognition and visualization. In: Proc. 2010 Int. Conf. on Cyberworlds, Singapore, pp. 262–269 (2010)

    Google Scholar 

  31. Blinn, J.F.: A generalization of algebraic surface drawing. SIGGRAPH Comput. Graph. 16, 273 (1982)

    Article  Google Scholar 

  32. Wyvill, G., McPheeters, C., Wyvill, B.: Data structure for soft objects. The Visual Computer 2, 227–234 (1986)

    Article  Google Scholar 

  33. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric modeling: concepts, implementation and applications. The Visual Computer 11 (1995)

    Google Scholar 

  34. Kulish, V., Sourin, A., Sourina, O.: Analysis and visualization of human electroencephalograms seen as fractal time series. Journal of Mechanics in Medicine and Biology 26, 175–188 (2006)

    Article  Google Scholar 

  35. Sourina, O., Sourin, A., Kulish, V.: EEG Data Driven Animation and Its Application. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2009. LNCS, vol. 5496, pp. 380–388. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  36. Hentschel, H.G.E., Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica D: Nonlinear Phenomena 8, 435–444 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Renyi, A.: On a new axiomatic theory of probability. Acta Mathematica Academiae Scientiarum Hungaricae 6, 285–335 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shannon, C.: The mathematical theory of communication. M.D. Computing 14 (1997)

    Google Scholar 

  39. Kulish, V., Sourin, A., Sourina, O.: Human electroencephalograms seen as fractal time series: Mathematical analysis and visualization. Computers in Biology and Medicine 36, 291–302 (2006)

    Article  Google Scholar 

  40. Pawelzik, K., Schuster, H.G.: Generalized dimensions and entropies from a measured time series. Physical Review A 35, 481–484 (1987)

    Article  Google Scholar 

  41. Phothisonothai, M., Nakagawa, M.: Fractal-based eeg data analysis of body parts movement imagery tasks. Journal of Physiological Sciences 57, 217–226 (2007)

    Article  Google Scholar 

  42. Sanei, S., Chambers, J.: EEG signal processing. John Wiley & Sons, Chichester (2007)

    Google Scholar 

  43. Wang, Q., Sourina, O., Nguyen, M.K.: Fractal dimension based neurofeedback. Visual Computer 27, 299–309 (2011)

    Article  Google Scholar 

  44. AES: American electroencephalographic society guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology 8, 200–202 (1991)

    Google Scholar 

  45. Sourina, O., Kulish, V.V., Sourin, A.: Novel tools for quantification of brain responses to music stimuli. In: Proc. of 13th International Conference on Biomedical Engineering, ICBME 2008 (2008)

    Google Scholar 

  46. Haptek: Haptek (2010)

    Google Scholar 

  47. IDM-Project: Emotion-based personalized digital media experience in co-spaces (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sourina, O., Wang, Q., Liu, Y., Nguyen, M.K. (2013). Fractal-Based Brain State Recognition from EEG in Human Computer Interaction. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2011. Communications in Computer and Information Science, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29752-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29752-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29751-9

  • Online ISBN: 978-3-642-29752-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics