Skip to main content

Characterizing Control of Brain–Computer Interfaces with BioGauges

  • Chapter
  • First Online:
Book cover Towards Practical Brain-Computer Interfaces

Abstract

Brain–computer interfaces (BCIs) measure small changes in brain signals or properties to provide alternative paths for controlling computers and other devices and for better understanding of human mental states. Although device-control has primarily been used for novel assistive technology (AT), BCIs have also been explored for use with able-bodied individuals in organizational settings. The substantial progress of research and development of these interfaces in recent years has produced a variety of techniques for brain imaging and signal interpretation. As a result, it has been difficult to objectively compare user performance with different BCIs to determine the most effective choice for an individual. This chapter reviews some of the challenges and issues in choosing the right BCI or other novel AT for each user. It presents the BioGauges method and toolset which provide a mechanism to fully characterize the outputs of a user operating a BCI to determine the range, reliability, and granularity of control possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allison, B.Z. (ed.): The I of BCIs: Next generation interfaces for brain–computer interface systems that adapt to individual users. Human–Computer Interaction: Novel Interaction Methods and Techniques. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  2. Allison, B.Z.: Toward ubiquitous BCIs. In: Graimann, B., Allison, B.Z., and Pfurtscheller, G. (eds.) Brain–computer interfaces: Revolutionizing Human–Computer Interaction, pp. 357–387. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  3. Allison, B.Z., Lüth. T., et al.: BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Trans. Neural. Syst. Rehabil. Eng. 18(2), 107–116 (2010)

    Google Scholar 

  4. Allison, B.Z., Neuper, C.: Could anyone use a BCI? in Brain–Computer Interfaces: Applying Our Minds to Human-Computer Interaction, Human-Computer Interaction Series In: Tan, D.S., Nijholt, A. (eds.) pp. 35–54, Springer Verlag, London (2010)

    Google Scholar 

  5. Bin, G., Gao, X., et al.: An online multi-channel SSVEP-based braincomputer interface using a canonical correlation analysis method. J. Neural Eng. 6(4) (2009)

    Google Scholar 

  6. Birbaumer, N., Cohen, L.: Brain–computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 579, 621–636 (2007)

    Google Scholar 

  7. Birch, G.E., Mason, S.G.: Brain–computer interface research at the Neil Squire Foundation. IEEE Trans. Rehab. Eng. 8(2), 193–195 (2000)

    Google Scholar 

  8. Blankertz, B., Sannelli. C., et al.: Neurophysiological predictor of SMR-based BCI performance. NeuroImage 51(4), 1303–1309 (2010)

    Google Scholar 

  9. Brunner, C., Allison, B.Z., et al.: A comparison of three brain–computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals. J. Neural Eng. 8(2), 025010 (2011)

    Google Scholar 

  10. Card, S.K., English. W.K., et al.: Evaluation of mouse, rate-controlled isometric joystick, step keys and text keys for text selection on a CRT. Ergonomics 21(8), 601–613 (1978)

    Google Scholar 

  11. Donchin, E., Spencer, K.M., et al.: The mental prosthesis: Assessing the speed of a P300-based brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 8(2), 174–179 (2000)

    Google Scholar 

  12. Farwell, L.A., Donchin, E.: Talking off the top of your head: Toward a mental prothesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Google Scholar 

  13. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)

    Google Scholar 

  14. Huggins, J.E., Wren, P.A., et al.: What would brain–computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 12(5), 1–8 (2011)

    Google Scholar 

  15. Jin, J., Allison, B.Z., et al.: An adaptive P300 based control system. J. Neural Eng. 8(3), 036006 (2011)

    Google Scholar 

  16. Kennedy, P.R., Adams, K.D.: A decision tree for brain–computer interface devices. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 148–150 (2003)

    Google Scholar 

  17. Krusienski, D., Sellers, E., et al.: Toward enhanced P300 speller performance. J. Neurosci. Methods 167(1), 15–21 (2008)

    Google Scholar 

  18. Kübler, A., Birbaumer, N.: Brain–computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin. Neurophysiol. 119(11), 2658–2666 (2008)

    Google Scholar 

  19. Kübler, A., Kotchoubey, B., et al.: Brain–computer communication: unlocking the locked-in. Psychol. Bull. 127, 358–375 (2001)

    Google Scholar 

  20. Kübler, A., Müller, K.R.: An Introduction to Brain Computer Interfacing. in Toward Brain–Computer Interfacing, Neural Information Processing Series, G. Dornhege, Millan, J.d.R., Hinterberger, T., McFarland, D.J., Muller, K.R., (eds.), MA: MIT Press, Cambridge, pp. 1–25 (2007)

    Google Scholar 

  21. Lalor, E., Kelly, S.P., et al.: Brain–computer interface based on the steady-state VEP for immersive gaming control. 2nd International Brain–Computer Interface Workshop Training Course, Graz, vol. 49, pp. 63–64 (2004)

    Google Scholar 

  22. Li, Y., Long, J., et al.: An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans. Biomed. Eng. 57(10), 2495–2505 (2010)

    Google Scholar 

  23. Lin, Y.-P., Wang, C.-H., et al.: EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57(7), 1798–1806 (2010)

    Google Scholar 

  24. Luo, A., Sullivan, T.J.: A user-friendly SSVEP-based brain–computer interface using a time-domain classifier. J. Neural Eng. 7(2), 026010 (2010)

    Google Scholar 

  25. Martinez, P., Bakardjian, H., Cichocki, A.: Fully online multicommand brain–computer interface with visual neurofeedback using SSVEP paradigm. Computational Intelligence and Neuroscience 9 (2007). DOI 10.1155/2007/94561

    Google Scholar 

  26. Mason, S.G., Bashashati, A., et al.: A comprehensive survey of brain interface technology designs. Ann. Biomed. Eng. 35(2), 137–169 (2007)

    Google Scholar 

  27. Mason, S.G., Moore Jackson, M.M., et al.: A general framework for characterizing studies of brain interface technology. Ann. Biomed. Eng. 33(11), 1653–1670 (2005)

    Google Scholar 

  28. Mason, S.G., Moore, M.M., et al.: Designing pointing devices using brain–computer interface technology. First International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy (2003)

    Google Scholar 

  29. McFarland, D.J., Sarnacki, W.A., et al.: Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 7(3), 036007 (2010)

    Google Scholar 

  30. Millan, E.Z., Furlong, T.M., et al.: Accumbens shell-hypothalamus interactions mediate extinction of alcohol seeking. J. Neurosci. 30, 4626–4635 (2010)

    Google Scholar 

  31. Moore Jackson, M.M., Mason, S.M., et al.: Analyzing trends in brain interface technology: A method to compare studies. Ann. Biomed. Eng. 34(5), 859–877 (2006)

    Google Scholar 

  32. Moore, M.M.: Real-world applications for brain–computer interface technology. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 162–165 (2003)

    Google Scholar 

  33. Moore, M.M., Dua, U.: A galvanic skin response interface for people with severe motor disabilities. 6th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS), Atlanta, GA (2004)

    Google Scholar 

  34. Neumann, N., Kübler, A.: Training locked-in patients: a challenge for the use of brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 169–172 (2003)

    Google Scholar 

  35. Nijboer, F., Broermann, U.: Brain–computer interfaces for communication and control in locked-in patients. In: Graimann, B., Pfurtscheller, G., Allison, B.Z. (eds.) Brain–Computer Interfaces – revolutionizing Human–Computer Interaction, pp. 185–201. Springer, Berlin (2010)

    Google Scholar 

  36. Nijholt, A., Tan, D.S., et al.: Brain–computer interfacing for intelligent systems. IEEE Intell. Syst. 23(3), 72–79 (2008)

    Google Scholar 

  37. Pfurtscheller, G., Allison, B.Z., et al.: The hybrid BCI. Front. Neurosci. 4(42) (2010)

    Google Scholar 

  38. Pfurtscheller, G., Flotzinger, D., et al.: EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components. Med. Prog. Technol. 21(3), 111–121 (1995–1996)

    Google Scholar 

  39. Pfurtscheller, G., Neuper, C.: Dynamics of sensorimotor oscillations in a motor task. Brain–Computer Interfaces: In: Graimann, B., Pfurtscheller, G., Allison, B.Z. (eds.) Revolutionizing Human–Computer Interaction, pp. 47–64. Springer, Berlin Heidelberg (2010)

    Google Scholar 

  40. Pregenzer, M., Pfurtscheller, G., et al.: Selection of electrode positions for an EEG-based Brain Computer Interface. Biomed. Tech. (Berl.) 39(10), 264–269 (1994)

    Google Scholar 

  41. Randolph, A.B., Jackson, M.M., et al.: Individual characteristics and their effect on predicting Mu rhythm modulation. Int. J. Hum. Comput. Interact. 27(1), 1–14 (2011)

    Google Scholar 

  42. Randolph, A.B., McCampbell, L.A., et al.: Methodology for characterizing biometric interface systems. Neuroscience 2005: The 35th Annual Meeting of the Society for Neuroscience, Washington, DC (2005a)

    Google Scholar 

  43. Randolph, A.B., McCampbell, L.A., et al.: Controllability of galvanic skin response. 11th International Conference on Human–Computer Interaction (HCII), Las Vegas, NV (2005b)

    Google Scholar 

  44. Randolph, A.B., Moore Jackson, M.M., et al.: BioGauges for characterizing biometric interface systems. 3rd International Meeting of Brain–Computer Interface Technology, Rensselaerville, NY (2005)

    Google Scholar 

  45. Randolph, A.B., Moore Jackson, M.M., et al.: BioGauges: Toward more objective evaluation of biometrically-based interfaces. 6th Annual Workshop on HCI Research in MIS, Montreal, Canada, Association for Information Systems (AIS) (2007)

    Google Scholar 

  46. Randolph, A.B., Moore Jackson, M.M.: Assessing fit of nontraditional assistive technologies. ACM Trans. Access. Comput. 2(4), 1–31 (2010)

    Google Scholar 

  47. Scherer, R., Lee, F., et al.: Towards self-paced brain–computer communication: Navigation through virtual worlds. IEEE Trans. Biomed. Eng. 55(2), 675–682 (2008)

    Google Scholar 

  48. Transducer. Random House Webster’s Unabridged Dictionary, Random House Reference: 2256 (2005)

    Google Scholar 

  49. Wolpaw, J.R., Birbaumer, N., et al.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Google Scholar 

  50. Wolpaw, J.R., McFarland, D.J., et al.: An EEG-based brain–computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991)

    Google Scholar 

  51. Zickler, C., Di Donna, V., et al.: BCI applications for people with disabilities: Defining user needs and user requirements. In: Emiliani, P.L., Burzagli, L., Como, A., Gabbanini F., Salimen, A.-L. (eds.) Assistive Technology from Adapted Equipment to Inclusive Environments, pp. 185–189. IOS Press, Amsterdam (2009)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Brendan Allison for his shared expertise on characterizing control of BCIs and his encouragement of this chapter. We would also like to thank our research sponsor, the National Science Foundation, CISE/IIS for their support on this project. Lastly, we would like to thank members of the GSU/GT BrainLab for their expertise in implementing the BioGauges toolset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriane B. Randolph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Randolph, A.B., Jackson, M.M.M., Mason, S.G. (2012). Characterizing Control of Brain–Computer Interfaces with BioGauges. In: Allison, B., Dunne, S., Leeb, R., Del R. Millán, J., Nijholt, A. (eds) Towards Practical Brain-Computer Interfaces. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29746-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29746-5_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29745-8

  • Online ISBN: 978-3-642-29746-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics