Skip to main content

Generation and Detection of Terahertz Radiation

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 171))

Abstract

Methods for generating and detecting terahertz (THz) radiation are reviewed with emphasis on the physical mechanisms involved as well as the typical characteristics of the generated radiation. We first discuss methods for generating and detecting broadband pulses of THz radiation, which are based on optical femtosecond laser systems. The second section describes techniques used to generate continuous-wave THz radiation and finally we review THz detectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In all materials of interest the mobility of electrons is much larger than that of the holes so that electrical dynamics of the system can be described solely by the motion of electrons.

  2. 2.

    p-type QCLs, relying on hole transport are thought to be possible but have not been demonstrated.

References

  1. D.H. Auston, K.P. Cheung, P.R. Smith, Appl. Phys. Lett. 45(3), 284 (1984). doi:10.1063/1.95174

    Google Scholar 

  2. C. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 53(16), 1480 (1988). doi:10.1063/1.99971

    Google Scholar 

  3. C. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 54(6), 490 (1989). doi:10.1063/1.100958

    Google Scholar 

  4. O. Svelto, Principles of Lasers (Plenum Press, New York, 1998), pp. 330–359

    Google Scholar 

  5. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, M. Schell, Opt. Express 16(13), 9565 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-13-9565

    Google Scholar 

  6. J. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998), pp. 410–413

    Google Scholar 

  7. L. Duvillaret, F. Garet, J.F. Roux, J.L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 7(4), 615 (2001). doi:10.1109/2944.974233

    Google Scholar 

  8. D.C. Look, D.C. Walters, G.D. Robinson, J.R. Sizelove, M.G. Mier, C.E. Stutz, J. Appl. Phys. 74(1), 306 (1993). doi:10.1063/1.354108

    Google Scholar 

  9. K.A. McIntosh, K.B. Nichols, S. Verghese, E.R. Brown, Appl. Phys. Lett. 70(3), 354 (1997). doi:10.1063/1.118412

    Google Scholar 

  10. M. Tani, S. Matsuura, K. Sakai, S.I. Nakashima, Appl. Opt. 36(30), 7853 (1997). http://ao.osa.org/abstract.cfm?URI=ao-36-30-7853

    Google Scholar 

  11. M. Tani, Y. Hirota, C. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, M. Hangyo, Int. J. Infrared Millim. Waves 27(4), 531 (2006). doi:10.1007/s10762-006-9105-8

    Google Scholar 

  12. F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, M. Tani, Appl. Phys. Lett. 96(21), 211104 (2010). doi:10.1063/1.3436724

    Google Scholar 

  13. P.K. Benicewicz, J.P. Roberts, A.J. Taylor, J. Opt. Soc. Am. B 11(12), 2533 (1994). http://josab.osa.org/abstract.cfm?URI=josab-11-12-2533

    Google Scholar 

  14. A. Yariv, P. Yeh, Optical Waves in Crystals, (Wiley, New York, 2003), Chap. Nonlinear Optics

    Google Scholar 

  15. Y.J. Ding, I.B. Zotova, Opt. Quantum Electron. 32(4), 531 (2000). doi:10.1023/A:1007099701272

    Google Scholar 

  16. G. Gallot, J. Zhang, R.W. McGowan, T.I. Jeon, D. Grischkowsky, Appl. Phys. Lett. 74(23), 3450 (1999). doi:10.1063/1.124124

    Google Scholar 

  17. A. Leitenstorfer, S. Hunsche, J. Shah, M.C. Nuss, W.H. Knox, Appl. Phys. Lett. 74(11), 1516 (1999). doi:10.1063/1.123601

    Google Scholar 

  18. A.G. Stepanov, J. Hebling, J. Kuhl, Appl. Phys. Lett. 83(15), 3000 (2003). doi:10.1063/1.1617371

    Google Scholar 

  19. K.L. Yeh, M.C. Hoffmann, J. Hebling, K.A. Nelson, Appl. Phys. Lett. 90(17), 171121 (2007). doi:10.1063/1.2734374

    Google Scholar 

  20. H. Hamster, A. Sullivan, S. Gordon, W. White, R.W. Falcone, Phys. Rev. Lett. 71(17), 2725 (1993). doi:10.1103/PhysRevLett.71.2725

    Google Scholar 

  21. T. Loffler, F. Jacob, H.G. Roskos, Appl. Phys. Lett. 77(3), 453 (2000). doi:10.1063/1.127007

    Google Scholar 

  22. K.Y. Kim, A.J. Taylor, J.H. Glownia., G. Rodriguez, Nat. Photon 2(10), 605 (2008). doi:10.1038/nphoton.2008.153

    Google Scholar 

  23. K.Y. Kim, Phys. Plasmas 16(5), 056706 (2009). doi:10.1063/1.3134422

    Google Scholar 

  24. Y. Shen, T. Watanabe, D.A. Arena, C.C. Kao, J.B. Murphy, T.Y. Tsang, X.J. Wang, G.L. Carr, Phys. Rev. Lett. 99(4), 043901 (2007). doi:10.1103/PhysRevLett.99.043901

    Google Scholar 

  25. G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan, G.R. Neil, G.P. Williams, Nature 420(6912), 153 (2002). doi:10.1038/nature01175

    Google Scholar 

  26. M. Abo-Bakr, J. Feikes, K. Holldack, G. Wüstefeld, H.W. Hübers, Phys. Rev. Lett. 88(25), 254801 (2002). doi:10.1103/PhysRevLett.88.254801

    Google Scholar 

  27. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. Johnston, M. Fischer, J. Faist, T. Dekorsy, Opt. Express 18, 4939 (2010)

    Article  ADS  Google Scholar 

  28. Z. Mihoubi, K.G. Wilcox, S. Elsmere, A. Quarterman, R. Rungsawang, I. Farrer, H.E. Beere, D.A. Ritchie, A. Tropper, V. Apostolopoulos, Opt. Lett. 33(18), 2125 (2008). http://ol.osa.org/abstract.cfm?URI=ol-33-18-2125

    Google Scholar 

  29. A.H. Quarterman, K.G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S.P. Elsmere, I. Farrer, D.A. Ritchie, A. Tropper, Nat. Photonics 3(12), 729 (2009). doi:10.1038/nphoton.2009.216

    Google Scholar 

  30. E. Baumann, F.R. Giorgetta, D. Hofstetter, H. Lu, X. Chen, W.J. Schaff, L.F. Eastman, S. Golka, W. Schrenk, G. Strasser, Appl. Phys. Lett. 87(19), 191102 (2005). doi:10.1063/1.2126130

    Google Scholar 

  31. X. Zheng, C.V. McLaughlin, P. Cunningham, M.L. Hayden, J. Nanoelectron. Optoelectron. 2, 58 (2007)

    Article  Google Scholar 

  32. E.R. Brown, F.W. Smith, K.A. McIntosh, J. Appl. Phys. 73(3), 1480 (1993). doi:10.1063/1.353222

    Google Scholar 

  33. S. Matsuura, M. Tani, K. Sakai, Appl. Phys. Lett. 70(5), 559 (1997). doi:10.1063/1.118337

    Google Scholar 

  34. K.A. McIntosh, E.R. Brown, K.B. Nichols, O.B. McMahon, W.F. DiNatale, T.M. Lyszczarz, Appl. Phys. Lett. 67(26), 3844 (1995). doi:10.1063/1.115292. http://link.aip.org/link/?APL/67/3844/1

    Google Scholar 

  35. S. Verghese, K. McIntosh, E. Brown, IEEE Trans. Microwave Theory Tech. 45(8), 1301 (1997)

    Article  ADS  Google Scholar 

  36. D. Saeedkia, S. Safavi-Naeini, J. Lightwave Technol. 26(15), 2409 (2008). http://jlt.osa.org/abstract.cfm?URI=JLT-26-15-2409

  37. E. Brown, in Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 2011

    Google Scholar 

  38. W. Shi, Y.J. Ding, N. Fernelius, K. Vodopyanov, Opt. Lett. 27(16), 1454 (2002). doi:10.1364/OL.27.001454

    Google Scholar 

  39. J.E. Schaar, K.L. Vodopyanov, M.M. Fejer, Opt. Lett. 32(10), 1284 (2007). doi:10.1364/OL.32.001284

    Google Scholar 

  40. K. Kawase, J. ichi Shikata, H. Ito, J. Phys. D Appl. Phys. 35(3), R1 (2002). http://stacks.iop.org/0022-3727/35/i=3/a=201

  41. D.J.M. Stothard, T.J. Edwards, D. Walsh, C.L. Thomson, C.F. Rae, M.H. Dunn, P.G. Browne, Appl. Phys. Lett. 92(14), 141105 (2008). doi:10.1063/1.2907489

    Google Scholar 

  42. G.W. Chantry, Long-Wave Optics (Academic Press, London, 1984)

    Google Scholar 

  43. R.G. Carter, Electromagnetic Waves: Microwave Components and Devices (Chapman and Hall, London, 1990)

    Google Scholar 

  44. V.G. Bozhkov, Radiophys. Quantum Electron. 46, 631 (2003). doi:10.1023/B:RAQE.0000024993.40125.2b

  45. I.R.M. Weikle, T.W. Crowe, E.L. Kollberg, Multiplier and Harmonic Generator Technologies for Terahertz Applications, in Terahertz Sensing Technology (World Scientific Publishing, Singapore, 2003)

    Google Scholar 

  46. J. Ward, G. Chattopadhyay, J. Gill, H. Javadi, C. Lee, R. Lin, A. Maestrini, F. Maiwald, I. Mehdi, E. Schlecht, P. Siegel, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2008. 15–19 Sept 2008, pp. 1–3. doi:10.1109/ICIMW.2008.4665437

  47. G. Kozlov, A. Volkov, in Millimeter and Submillimeter Wave Spectroscopy of Solids, ed. by G. Grüner. Topics in Applied Physics, vol. 74, (Springer, Berlin, 1998), Chap. 3, pp. 51–109. doi:10.1007/BFb0103420.10.1007/BFb0103420

  48. Y.S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009), p. 141

    Google Scholar 

  49. A. Dobroiu, M. Yamashita, Y.N. Ohshima, Y. Morita, C. Otani, K. Kawase, Appl. Opt. 43(30), 5637 (2004). doi:10.1364/AO.43.005637

    Google Scholar 

  50. K.J. Kim, A. Sessler, Science 250(4977), 88 (1990). doi:10.1126/science.250.4977.88

    Google Scholar 

  51. Ucsb, FEL database. http://sbfel3.ucsb.edu/www/fel_table.html. Accessed 21 Feb 2011

  52. L.A. Reichertz, O.D. Dubon, G. Sirmain, E. Bründermann, W.L. Hansen, D.R. Chamberlin, A.M. Linhart, H.P. Röser, E.E. Haller, Phys. Rev. B 56(19), 12069 (1997). doi:10.1103/PhysRevB.56.12069

    Google Scholar 

  53. E. Brundermann, D.R. Chamberlin, E.E. Haller, Appl. Phys. Lett. 76(21), 2991 (2000). doi:10.1063/1.126555

    Google Scholar 

  54. F. Keilmann, V.N. Shastin, R. Till, Appl. Phys. Lett. 58(20), 2205 (1991). doi:10.1063/1.105235

    Google Scholar 

  55. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, J. Faist, Laser Photonics Rev. 3(1–2), 45 (2009). doi:10.1002/lpor.200810030.0214

    Google Scholar 

  56. G. Scalari, C. Walther, L. Sirigu, M.L. Sadowski, H. Beere, D. Ritchie, N. Hoyler, M. Giovannini, J. Faist, Phys. Rev. B 76(11), 115305 (2007). doi:10.1103/PhysRevB.76.115305.0215

    Google Scholar 

  57. S. Barbieri, J. Alton, S. Dhillon, H. Beere, M. Evans, E. Linfield, A. Davies, D. Ritchie, R. Kohler, A. Tredicucci, F. Beltram, IEEE J. Quantum Electron. 39(4), 586 (2003). B017

    Google Scholar 

  58. S. Kumar, Q. Hu, J.L. Reno, Appl. Phys. Lett. 94(13), 131105 (2009). doi:10.1063/1.3114418.0235

    Google Scholar 

  59. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. Williams, Q. Hu, J. Reno, Nat. Photonics 3(1), 41 (2009). doi:10.1038/nphoton.2008.251.0217

  60. P. Griffiths, J.A.D. Haseth, Fourier Transform Infrared Spectrometry, (Wiley, New Jersey, 2007)

    Google Scholar 

  61. F. Sizov, OptoElectron. Rev. 18(1), 10 (2010). doi:10.2478/s11772-009-0029-4

    Google Scholar 

  62. P.L. Richards, J. Appl. Phys. 76(1), 1 (1994). doi:10.1063/1.357128

  63. E. Putley, in Infrared Detectors, vol. 5, ed. by R. Willardson, A.C. Beer (Academic Press, New York, 1970), pp. 259–285. http://www.sciencedirect.com/science/article/B7W5P-4SD21XD-B/2/fe15f961c5f5e0cacab06ae91d22e45a

  64. M.J.E. Golay, Rev. Sci. Instrum. 20(11), 816 (1949). doi:10.1063/1.1741396

    Google Scholar 

  65. T.W. Kenny, J.K. Reynolds, J.A. Podosek, E.C. Vote, L.M. Miller, H.K. Rockstad, W.J. Kaiser, Rev. Sci. Instrum. 67(1), 112 (1996). doi:10.1063/1.1146559

    Google Scholar 

  66. P. Yagoubov, M. Kroug, H. Merkel, E. Kollberg, G. Gol’tsman, S. Svechnikov, E. Gershenzon, Appl. Phys. Lett. 73(19), 2814 (1998). doi:10.1063/1.122599

    Google Scholar 

  67. H.W. Hübers, H. Richter, S. Pavlov, A. Semenov, A. Tredicucci, L. Mahler, H. Beere, D. Ritchie, Frequenz 62(5), 0202 (2008)

    Article  Google Scholar 

  68. H. Richter, A.D. Semenov, S.G. Pavlov, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie, K.S. Il’in, M. Siegel, H.W. Hubers, Appl. Phys. Lett. 93(14), 141108 (2008). doi:10.1063/1.2988896.0205

    Google Scholar 

  69. H. Liu, H. Luo, C. Song, Z. Wasilewski, A.S. Thorpe, J. Cao, Infrared Phys. Technol. 50(2–3), 191 (2007). doi:10.1016/j.infrared.2006.10.026

    Google Scholar 

  70. C.H. Yu, B. Zhang, W. Lu, S.C. Shen, H.C. Liu, Y.Y. Fang, J.N. Dai, C.Q. Chen, Appl. Phys. Lett. 97(2), 022102 (2010). doi:10.1063/1.3462300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua R. Freeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freeman, J.R., Beere, H.E., Ritchie, D.A. (2012). Generation and Detection of Terahertz Radiation. In: Peiponen, KE., Zeitler, A., Kuwata-Gonokami, M. (eds) Terahertz Spectroscopy and Imaging. Springer Series in Optical Sciences, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29564-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29564-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29563-8

  • Online ISBN: 978-3-642-29564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics