Skip to main content

Treatment of Orthopedic Infections: Addressing the Biofilm Issue

  • Chapter
  • First Online:
Culture Negative Orthopedic Biofilm Infections

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 7))

  • 608 Accesses

Abstract

Chronic infections of bone and joints always have been considered especially difficult to treat, requiring multiple operations with long hospital stays, prolonged antibiotic medication in high dosage, and extended periods of impairment. Still cure often cannot be obtained leading to amputation in many cases. The reasons for infection resistance against conventional antimicrobial therapies have been elucidated only in the last three decades, based on the pioneering work of William Costerton, showing that pathogens may change from the familiar planktonic forms into phenotypically different sessile forms after adhesion to unvascularized surfaces, forming the organized biocoenosis of a biofilm. Biofilm-embedded bacteria are present in all orthopedic infections and require much higher concentrations (up to 1,000 times) of antibiotics for elimination than their planktonic forms. For creating higher local antibiotic concentrations, carriers have been developed, but the frequently used devices made of poly(methyl methacrylate) cannot provide sufficient concentrations in the surrounding tissues and spaces and act as a substrate of biofilm colonization themselves. Antibiofilm substances have been investigated but are not yet available for clinical practice. Presently the only possibility of a biofilm-centered treatment is found in sophisticated techniques of debridement combined with increased antibiotic concentrations at the site of infection. Highly purified bone has been found to be an appropriate tool for storing and delivering the required amount of antibiotics in order to eliminate biofilm remnants after meticulous debridement. Additionally it offers the advantage of reconstructing osseous defects that always are present after surgically treated bone infection. Using antibiotic-impregnated bone graft treatment of infection, reconstruction and internal stabilization may be performed within a single operation. Long hospital stays and treatments associated with prolonged periods of pain and/or reduced mobility may be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammon P, Stockley I (2004) Allograft bone in two-stage revision of the hip for infection. Is it safe? J Bone Joint Surg Br 86:962–965

    Article  PubMed  CAS  Google Scholar 

  • Amorena B, Gracia E, Monzón M et al (1999) Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother 44:43–55

    Article  PubMed  CAS  Google Scholar 

  • Anwar H, Strap JL, Chen K, Costerton JW (1992) Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Agents Chemother 36:1208–1214

    Article  PubMed  CAS  Google Scholar 

  • Balaban N, Cirioni O, Giacometti A et al (2007) Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother 51:2226–2229

    Article  PubMed  CAS  Google Scholar 

  • Baleani M, Persson C, Zolezzi C, Andollina A, Borrelli AM, Tigani D (2008) Biological and biomechanical effects of vancomycin and meropenem in acrylic bone cement. J Arthroplasty 23:1232–1238

    Article  PubMed  Google Scholar 

  • Barcia-Macay M, Lemaire S, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F (2006) Evaluation of the extracellular and intracellular activities (human THP-1 macrophages) of telavancin versus vancomycin against methicillin-susceptible, methicillin-resistant, vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. J Antimicrob Chemother 58:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Bertazzoni Minelli E, Benini A, Magnan B, Bartolozzi P (2004) Release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty. J Antimicrob Chemother 53:329–334

    Article  PubMed  CAS  Google Scholar 

  • Buchholz HW, Engelbrecht H (1970) Depot effects of various antibiotics mixed with Palacos resins. Chirurg 41:511–515

    PubMed  CAS  Google Scholar 

  • Buttaro MA, Gimenez MI, Greco G, Barcan L, Piccaluga F (2005a) High active local levels of vancomycin without nephrotoxicity released from impacted bone allografts in 20 revision hip arthroplasties. Acta Orthop 76:336–340

    PubMed  Google Scholar 

  • Buttaro MA, Pusso R, Piccaluga F (2005b) Vancomycin-supplemented impacted bone allografts in infected hip arthroplasty. Two-stage revision results. J Bone Joint Surg Br 87:314–319

    Article  PubMed  CAS  Google Scholar 

  • Carmen JC, Roeder BL, Nelson JL et al (2005) Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am J Infect Control 33:78–82

    Article  PubMed  Google Scholar 

  • Chang CC, Merritt K (1992) Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. J Biomed Mater Res 26:197–207

    Article  PubMed  CAS  Google Scholar 

  • Chuard C, Vaudaux P, Waldvogel FA, Lew DP (1993) Susceptibility of Staphylococcus aureus growing on fibronectin-coated surfaces to bactericidal antibiotics. Antimicrob Agents Chemother 37:625–632

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW (2005) Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res (437):7–11

    Google Scholar 

  • Darouiche RO, Dhir A, Miller AJ, Landon GC, Raad II, Musher DM (1994) Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria. J Infect Dis 170:720–723

    Article  PubMed  CAS  Google Scholar 

  • Dempsey KE, Riggio MP, Lennon A et al (2007) Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16 S rRNA gene sequencing and by microbiological culture. Arthritis Res Ther 9:R46

    Article  PubMed  Google Scholar 

  • Desai M, Bühler T, Weller PH, Brown MR (1998) Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. J Antimicrob Chemother 42:153–160

    Article  PubMed  CAS  Google Scholar 

  • Dunne WM Jr, Mason EO Jr, Kaplan SL (1993) Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 37:2522–2526

    Article  PubMed  CAS  Google Scholar 

  • Dunne N, Hill J, McAfee P et al (2007) In vitro study of the efficacy of acrylic bone cement loaded with supplementary amounts of gentamicin: effect on mechanical properties, antibiotic release, and biofilm formation. Acta Orthop 78:774–785

    Article  PubMed  Google Scholar 

  • Edin ML, Miclau T, Lester GE, Lindsey RW, Dahners LE (1996) Effect of cefazolin and vancomycin on osteoblasts in vitro. Clin Orthop Relat Res (333):245–251

    Google Scholar 

  • Editorial Comment (1919) Treatment of chronic osteomyelitis of traumatic origin. Ann Surg 69:72–84

    Article  Google Scholar 

  • El-Azizi M, Rao S, Kanchanapoom T, Khardori N (2005) In vitro activity of vancomycin, quinupristin/dalfopristin, and linezolid against intact and disrupted biofilms of staphylococci. Ann Clin Microbiol Antimicrob 4:2

    Article  PubMed  Google Scholar 

  • Friedlaender GE (1991) Bone allografts: the biological consequences of immunological events. J Bone Joint Surg Am 73:1119–1122

    PubMed  CAS  Google Scholar 

  • Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW (2003) Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther 1:667–683

    Article  PubMed  Google Scholar 

  • Fux CA, Wilson S, Stoodley P (2004) Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186:4486–4491

    Article  PubMed  CAS  Google Scholar 

  • Gattringer KB, Suchomel M, Eder M, Lassnigg AM, Graninger W, Presterl E (2010) Time-dependent effects of rifampicin on staphylococcal biofilms. Int J Artif Organs 33:621–626

    PubMed  CAS  Google Scholar 

  • Ghani M, Soothill JS (1997) Ceftazidime, gentamicin, and rifampicin, in combination, kill biofilms of mucoid Pseudomonas aeruginosa. Can J Microbiol 43:999–1004

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez Della Valle A, Bostrom M, Brause B, Harney C, Salvati EA (2001) Effective bactericidal activity of tobramycin and vancomycin eluted from acrylic bone cement. Acta Orthop Scand 72:237–240

    Article  PubMed  CAS  Google Scholar 

  • Gorur ALD, Schaudinn C, Costerton JW (2009) Biofilm removal with a dental water jet. Compend Contin Educ Dent 30:1–6

    PubMed  Google Scholar 

  • Greene N, Holtom PD, Warren CA et al (1998) In vitro elution of tobramycin and vancomycin polymethylmethacrylate beads and spacers from Simplex and Palacos. Am J Orthop 27:201–205

    PubMed  CAS  Google Scholar 

  • Gristina AG, Costerton JW (1985) Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg Am 67:264–273

    PubMed  CAS  Google Scholar 

  • Gristina AG, Oga M, Webb LX, Hobgood CD (1985) Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science 228:990–993

    Article  PubMed  CAS  Google Scholar 

  • Gristina AG, Jennings RA, Naylor PT, Myrvik QN, Webb LX (1989) Comparative in vitro antibiotic resistance of surface-colonizing coagulase-negative staphylococci. Antimicrob Agents Chemother 33:813–816

    Article  PubMed  CAS  Google Scholar 

  • Hazlett JW (1954) The use of cancellous bone grafts in the treatment of subacute and chronic osteomyelitis. J Bone Joint Surg Br 36-B:584–590

    PubMed  CAS  Google Scholar 

  • Jackson WO, Schmalzried TP (2000) Limited role of direct exchange arthroplasty in the treatment of infected total hip replacements. Clin Orthop Relat Res (381):101–105

    Google Scholar 

  • Jamsen E, Stogiannidis I, Malmivaara A, Pajamaki J, Puolakka T, Konttinen YT (2009) Outcome of prosthesis exchange for infected knee arthroplasty: the effect of treatment approach. Acta Orthop 80:67–77

    Article  PubMed  Google Scholar 

  • Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49:2467–2473

    Article  PubMed  CAS  Google Scholar 

  • Katz J, Mukherjee N, Cobb RR, Bursac P, York-Ely A (2009) Incorporation and immunogenicity of cleaned bovine bone in a sheep model. J Biomater Appl 24:159–174

    Article  PubMed  Google Scholar 

  • Khoo PPC, Michalak KA, Yates PJ, Megson SM, Day RE, Wood DJ (2006) Iontophoresis of antibiotics into segmental allografts. J Bone Joint Surg Br 88-B:1149–1157

    Article  Google Scholar 

  • Klekamp J, Dawson JM, Haas DW, DeBoer D, Christie M (1999) The use of vancomycin and tobramycin in acrylic bone cement: biomechanical effects and elution kinetics for use in joint arthroplasty. J Arthroplasty 14:339–346

    Article  PubMed  CAS  Google Scholar 

  • Klemm K (1979) Gentamicin-PMMA-beads in treating bone and soft tissue infections (author’s transl). Zentralbl Chir 104:934–942

    PubMed  CAS  Google Scholar 

  • Konig DP, Schierholz JM, Munnich U, Rutt J (2001) Treatment of staphylococcal implant infection with rifampicin-ciprofloxacin in stable implants. Arch Orthop Trauma Surg 121:297–299

    Article  PubMed  CAS  Google Scholar 

  • Lie SA, Havelin LI, Furnes ON, Engesaeter LB, Vollset SE (2004) Failure rates for 4762 revision total hip arthroplasties in the Norwegian Arthroplasty Register. J Bone Joint Surg Br 86:504–509

    PubMed  CAS  Google Scholar 

  • Marrie TJ, Costerton JW (1985) Mode of growth of bacterial pathogens in chronic polymicrobial human osteomyelitis. J Clin Microbiol 22:924–933

    PubMed  CAS  Google Scholar 

  • Masri B, Duncan C, Beauchamp C (1998) Long-term elution of antibiotics from bone-cement: an in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) system. J Arthroplasty 13:331–338

    Article  PubMed  CAS  Google Scholar 

  • Murillo O, Domenech A, Garcia A et al (2006) Efficacy of high doses of levofloxacin in experimental foreign-body infection by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 50:4011–4017

    Article  PubMed  CAS  Google Scholar 

  • Nelson CL, McLaren AC, McLaren SG, Johnson JW, Smeltzer MS (2005) Is aseptic loosening truly aseptic? Clin Orthop Relat Res (437):25–30

    Google Scholar 

  • Neut D, van De Belt H, Stokroos I, van Horn JR, van Der Mei HC, Busscher HJ (2001) Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother 47:885–891

    Article  PubMed  CAS  Google Scholar 

  • Neut D, van der Mei HC, Bulstra SK, Busscher HJ (2007) The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics. Acta Orthop 78:299–308

    Article  PubMed  Google Scholar 

  • Pitt WG, McBride MO, Lunceford JK, Roper RJ, Sagers RD (1994) Ultrasonic enhancement of antibiotic action on gram-negative bacteria. Antimicrob Agents Chemother 38:2577–2582

    Article  PubMed  CAS  Google Scholar 

  • Prigge EK (1946) The treatment of chornic osteomyelitis by the use of muscle transplant of iliac graft. J Bone Joint Surg Am 28:576–593

    PubMed  CAS  Google Scholar 

  • Rediske AM, Hymas WC, Wilkinson R, Pitt WG (1998) Ultrasonic enhancement of antibiotic action on several species of bacteria. J Gen Appl Microbiol 44:283–288

    Article  PubMed  CAS  Google Scholar 

  • Reynolds FC, Zaepfel F (1948) Management of chornic osteomyelitis secondary to compound fractures. J Bone Joint Surg Am 30:331–338

    Google Scholar 

  • Rose WE, Poppens PT (2009) Impact of biofilm on the in vitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphylococcus aureus. J Antimicrob Chemother 63:485–488

    Article  PubMed  CAS  Google Scholar 

  • Rothman RH, Cohn JC (1990) Cemented versus cementless total hip arthroplasty. A critical review. Clin Orthop Relat Res (254):153–169

    Google Scholar 

  • Rowling DE (1970) Further experience in the management of chronic osteomyelitis. J Bone Joint Surg Br 52-B:302–307

    Google Scholar 

  • Saginur R, Stdenis M, Ferris W et al (2006) Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob Agents Chemother 50:55–61

    Article  PubMed  CAS  Google Scholar 

  • Smith AW (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Smith K, Perez A, Ramage G, Gemmell CG, Lang S (2009) Comparison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clindamycin, daptomycin, linezolid, tigecycline and vancomycin. Int J Antimicrob Agents 33:374–378

    Article  PubMed  CAS  Google Scholar 

  • Stephens R (1921) Osteomyelitis following was injureis: based on the sutdy of 61 cases. J Bone Joint Surg Am 3:138–153

    Google Scholar 

  • Suci PA, Mittelman MW, Yu FP, Geesey GG (1994) Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38:2125–2133

    Article  PubMed  CAS  Google Scholar 

  • Trampuz A, Piper KE, Jacobson MJ et al (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357:654–663

    Article  PubMed  CAS  Google Scholar 

  • Tunney MM, Ramage G, Patrick S, Nixon JR, Murphy PG, Gorman SP (1998) Antimicrobial susceptibility of bacteria isolated from orthopedic implants following revision hip surgery. Antimicrob Agents Chemother 42:3002–3005

    PubMed  CAS  Google Scholar 

  • Tunney MM, Patrick S, Curran MD et al (1999) Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16 S rRNA gene. J Clin Microbiol 37:3281–3290

    PubMed  CAS  Google Scholar 

  • Tunney MM, Dunne N, Einarsson G, McDowell A, Kerr A, Patrick S (2007) Biofilm formation by bacteria isolated from retrieved failed prosthetic hip implants in an in vitro model of hip arthroplasty antibiotic prophylaxis. J Orthop Res 25:2–10

    Article  PubMed  CAS  Google Scholar 

  • van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ (2000) Gentamicin release from polymethylmethacrylate bone cements and Staphylococcus aureus biofilm formation. Acta Orthop Scand 71:625–629

    Article  PubMed  Google Scholar 

  • van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ (2001) Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand 72:557–571

    Article  PubMed  Google Scholar 

  • von Eiff C, Peters G, Becker K (2006) The small colony variant (SCV) concept – the role of staphylococcal SCVs in persistent infections. Injury 37(suppl 2):S26–S33

    Article  Google Scholar 

  • Walenkamp GH (2001) Gentamicin PMMA beads and other local antibiotic carriers in two-stage revision of total knee infection: a review. J Chemother 13(Spec No 1):66–72

    PubMed  CAS  Google Scholar 

  • Watanakunakorn C, Tisone JC (1982) Synergism between vancomycin and gentamicin or tobramycin for methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 22:903–905

    Article  PubMed  CAS  Google Scholar 

  • Widmer AF, Gaechter A, Ochsner PE, Zimmerli W (1992) Antimicrobial treatment of orthopedic implant-related infections with rifampin combinations. Clin Infect Dis 14:1251–1253

    Article  PubMed  CAS  Google Scholar 

  • Winkler H, Janata O, Berger C, Wein W, Georgopoulos A (2000) In vitro release of vancomycin and tobramycin from impregnated human and bovine bone grafts. J Antimicrob Chemother 46:423–428

    Article  PubMed  CAS  Google Scholar 

  • Witso E, Persen L, Loseth K, Bergh K (1999) Adsorption and release of antibiotics from morselized cancellous bone. In vitro studies of 8 antibiotics. Acta Orthop Scand 70:298–304

    Article  PubMed  CAS  Google Scholar 

  • Witso E, Persen L, Loseth K, Benum P, Bergh K (2000) Cancellous bone as an antibiotic carrier. Acta Orthop Scand 71:80–84

    Article  PubMed  CAS  Google Scholar 

  • Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279:1537–1541

    Article  PubMed  CAS  Google Scholar 

  • Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351:1645–1654

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winkler, H. (2012). Treatment of Orthopedic Infections: Addressing the Biofilm Issue. In: Ehrlich, G., DeMeo, P., Costerton, J., Winkler, H. (eds) Culture Negative Orthopedic Biofilm Infections. Springer Series on Biofilms, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29554-6_9

Download citation

Publish with us

Policies and ethics