Skip to main content

Generation of Internal Stress During Hydrogen and Lithium Transport

  • Chapter
  • First Online:
Electrochemistry of Insertion Materials for Hydrogen and Lithium

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1369 Accesses

Abstract

Atomic diffusion in insertion electrodes such as hydride-forming metals and transition metal oxides may induce structural deformation due to a volume change, modifying the physical properties of the electrode. Also, the strain or stress field induced by an external force, for example, elastic bending, may influence the diffusion process in the electrode, because of the resulting inhomogeneous distribution of the atoms. The relationship between the diffusion and macroscopic deformation of the electrode can be classified into the elasto-diffusive and diffusion-elastic phenomena as schematically illustrated in Table 6.1 [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han JN, Pyun SI (2001) Application of laser beam deflection technique to analysis of stresses generated during hydrogen diffusion through Pd foil electrode. J Korean Electrochem Soc 4:70–76

    CAS  Google Scholar 

  2. Lewis FA, Kandasamy K, Baranowski B (1988) The “uphill” diffusion of hydrogen. Platinum Met Rev 32:22–26

    CAS  Google Scholar 

  3. Baranowski B (1989) Stress-induced diffusion in hydrogen permeation through Pd81Pt19 membranes. J Less-Common Met 154:329–353

    Article  CAS  Google Scholar 

  4. Cermak J, Kufudakis A (1976) Diffusion-elastic phenomenon and diffusivity of hydrogen in nickel. J Less-Common Met 49:309–322

    Article  Google Scholar 

  5. Kandasamy K (1995) Influences of self-induced stress on permeation flux and space-time variation of concentration during diffusion of hydrogen in a palladium alloy. Int J Hydrogen Energy 20:455–463

    Article  CAS  Google Scholar 

  6. Sakamoto Y, Tanaka H, Lewis FA, Tong XQ, Kandasamy K (1996) “Uphill” hydrogen diffusion effects of hydrogen interstitial strain gradients in palladium and palladium alloys. Int J Hydrogen Energy 21:1025–1032

    Article  CAS  Google Scholar 

  7. Cermak J, Kufudakis A, Lewis FA (1993) A comparison of measurements of diffusivity of hydrogen in Pd for three different diffusion-elastic processes. Z Phys Chem 181:233–238

    Article  CAS  Google Scholar 

  8. Kim DJ, Pyun SI (1999) Stress generation and annihilation during hydrogen injection into and extraction from anodic WO3 films. Electrochim Acta 44:1723–1732

    Article  CAS  Google Scholar 

  9. Han JN, Pyun SI, Kim DJ (1999) Analysis of the compressive and tensile stresses generation/relaxation during hydrogen ingress into and egress from Pd foil electrode. Electrochim Acta 44:1797–1804

    Article  CAS  Google Scholar 

  10. Han JN, Pyun SI (2000) Analysis of open-circuit potential transient and laser beam deflection transient simultaneously measured from Pd foil electrode pre-charged with hydrogen. Electrochim Acta 45:2781–2790

    Article  CAS  Google Scholar 

  11. Pyun SI, Kim KH, Han JN (2000) Analysis of stresses generated during hydrogen extraction from and injection into Ni(OH)2/NiOOH film electrode. J Power Sources 91:92–98

    Article  CAS  Google Scholar 

  12. Han JN, Lee JW, Seo M, Pyun SI (2001) Analysis of stresses generated during hydrogen transport through a Pd foil electrode under potential sweep conditions. J Electroanal Chem 506:1–10

    Article  CAS  Google Scholar 

  13. Pyun SI, Go JY, Jan TS (2004) An investigation of intercalation-induced stresses generated during lithium transport through Li1-δCoO2 film electrode using a laser beam deflection method. Electrochim Acta 49:4477–4486

    Article  CAS  Google Scholar 

  14. Kim YH, Pyun SI, Go JY (2005) An investigation of intercalation-induced stresses generated during lithium transport through sol–gel derived LixMn2O4 film electrode using a laser beam deflection method. Electrochim Acta 51:441–449

    Article  CAS  Google Scholar 

  15. Crank J (1975) The mathematics of diffusion. Clarendon, Oxford/New York

    Google Scholar 

  16. Lu C, Czanderna AW (1984) Application of piezoelectric quartz crystal microbalances. Elsevier, New York

    Google Scholar 

  17. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys A Hadron Nuclei 155:206–222

    CAS  Google Scholar 

  18. Lostis P (1959) The study, production and control of thin films giving a chosen path difference between perpendicularly polarized components. Rev Opt Theor Instr 38:1–5

    Google Scholar 

  19. EerNisse EP (1972) Simultaneous thin‐film stress and mass‐change measurements using quartz resonators. J Appl Phys 43:1330–1337

    Article  CAS  Google Scholar 

  20. EerNisse EP (1973) Extension of the double resonator technique. J Appl Phys 44:4482–4485

    Article  CAS  Google Scholar 

  21. Smyrl WH, Lien M (1992) New trends and approaches in electrochemical technology. Kodansha, Tokyo

    Google Scholar 

  22. Nelson JC, Oriani RA (1992) Stresses produced by the anodic oxidation of nickel. Electrochim Acta 37:2051–2057

    Article  CAS  Google Scholar 

  23. Kim DJ, Pyun SI, Oriani RA (1996) Effects of chloride ion and applied current density on the stress generation during anodic oxidation of tungsten in 0.1 M H2SO4 solution. Electrochim Acta 41:57–62

    Article  CAS  Google Scholar 

  24. West AR (1984) Solid state chemistry and its applications. Wiley, New York

    Google Scholar 

  25. Go JY, Pyun SI (2003) Investigation of stresses generated during lithium transport through the RF sputter-deposited Li1−δCoO2 film by a DQCR technique. J Electrochem Soc 150:A1037–A1043

    Article  CAS  Google Scholar 

  26. Yang TH, Pyun SI (1996) Hydrogen absorption and diffusion into and in palladium: ac-impedance analysis under impermeable boundary conditions. Electrochim Acta 41:843–848

    Article  CAS  Google Scholar 

  27. Yang TH, Pyun SI, Yoon YG (1997) Hydrogen transport through Pd electrode: current transient analysis. Electrochim Acta 42:1701–1708

    Article  CAS  Google Scholar 

  28. Lim C, Pyun SI (1993) Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode. Electrochim Acta 38:2645–2652

    Article  CAS  Google Scholar 

  29. Ura H, Nishina T, Uchida I (1995) Electrochemical measurements of single particles of Pd and LaNi5 with a microelectrode technique. J Electroanal Chem 396:169–173

    Article  Google Scholar 

  30. Scarminio J, Talledo A, Andersson AA, Passerini DF (1993) Stress and electrochromism induced by Li insertion in crystalline and amorphous V2O5 thin film electrodes. Electrochim Acta 38:1637–1642

    Article  CAS  Google Scholar 

  31. Lee SJ, Lee JK, Chung SH, Lee HY, Lee SM, Baik HK (2001) Stress effect on cycle properties of the silicon thin-film anode. J Power Sources 97–98:191–193

    Article  Google Scholar 

  32. Chung KY, Kim KB (2002) Investigation of structural fatigue in spinel electrodes using in situ laser probe beam deflection technique. J Electrochem Soc 149:A79–A85

    Article  CAS  Google Scholar 

  33. Pyun SI, Go JY, Jang TS (2004) An investigation of intercalation-induced stresses generated during lithium transport through Li1−δCoO2 film electrode using a laser beam deflection method. Electrochim Acta 49:4477–4486

    Article  CAS  Google Scholar 

  34. Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139:2091–2097

    Article  CAS  Google Scholar 

  35. Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, Singapore

    Google Scholar 

  36. Kato M, Fujii T, Onaka S (1996) Elastic strain energies of sphere, plate and needle inclusions. Mater Sci Eng A 211:95–103

    Article  Google Scholar 

  37. Bauccio M (1994) ASM engineered materials reference book, 2nd edn. ASM International, Materials Park

    Google Scholar 

  38. Schumacher R, Gordon JG, Melroy O (1987) Observation of morphological relaxation of copper and silver electrodes in solution using a quartz microbalance. J Electroanal Chem Interfacial Electrochem 216:127–135

    Article  CAS  Google Scholar 

  39. Yang M, Thompson M (1993) Surface morphology and the response of the thickness-shear mode acoustic wave sensor in liquids. Langmuir 9:1990–1994

    Article  CAS  Google Scholar 

  40. Martin SJ, Frye GC, Ricco AJ, Senturia SD (1993) Effect of surface roughness on the response of thickness-shear mode resonators in liquids. Anal Chem 65:2910–2922

    Article  CAS  Google Scholar 

  41. Reed CE, Kanazawa KK, Kaufman JH (1990) Physical description of a viscoelastically loaded AT‐cut quartz resonator. J Appl Phys 68:1993–2001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pyun, SI., Shin, HC., Lee, JW., Go, JY. (2012). Generation of Internal Stress During Hydrogen and Lithium Transport. In: Electrochemistry of Insertion Materials for Hydrogen and Lithium. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29464-8_6

Download citation

Publish with us

Policies and ethics