Skip to main content

Hydrogen Absorption into and Subsequent Diffusion Through Hydride-Forming Metals

  • Chapter
  • First Online:
  • 1406 Accesses

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

In most theoretical and experimental investigations, it has been assumed that the rate-determining step (RDS) of hydrogen insertion (intercalation, ingress, cathodic charging/injection/introduction) into and desertion (deintercalation, egress, anodic extraction) from hydride-forming electrodes is hydrogen diffusion through the electrode. In practice, however, the rate of hydrogen insertion into and desertion from the electrode is simultaneously determined by the rates of two or more reaction steps, such as hydrogen ion transport through the electrolyte by diffusion and migration (ohmic potential drop), interfacial charge (electron) transfer (cathodic discharge of hydrogen ions), interfacial hydrogen transfer, and subsequent hydrogen diffusion through the electrode [1]. The RDS of the series-connected overall hydrogen insertion reaction is defined as the most strongly impeded/disturbed “slowest” step deviating far from its thermodynamic equilibrium state that represents the highest hydrogen overpotential and/or impedance pertaining to the step. In this respect, the mechanism of hydrogen insertion into and from a hydride-forming electrode has been extensively studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee SJ, Pyun SI, Yoon YG (2011) Pathways of diffusion mixed with subsequent reactions with examples of hydrogen extraction from hydride-forming electrode and oxygen reduction at gas diffusion electrode. J Solid State Electrochem 15:2437–2445

    Article  CAS  Google Scholar 

  2. Bolzan AE (1995) Phenomenological aspects related to the electrochemical behaviour of smooth palladium electrodes in alkaline solutions. J Electroanal Chem 380:127–138

    Article  Google Scholar 

  3. Deng B, Li Y, Wang R, Fang S (1999) Two reduction processes for hydrogen adsorption and absorption at MmNi5-type alloy electrodes (Mm: “Mischmetall”). Electrochim Acta 44:2853–2857

    Article  CAS  Google Scholar 

  4. Han JN, Lee JW, Seo M, Pyun SI (2001) Analysis of stresses generated during hydrogen transport through a Pd foil electrode under potential sweep conditions. J Electroanal Chem 506:1–10

    Article  CAS  Google Scholar 

  5. Gamboa SA, Sebastian PJ, Feng F, Geng M, Northwood DO (2002) Cyclic voltametry investigation of a metal hydride electrode for nickel metal hydride batteries. J Electrochem Soc 149:A137–A139

    Article  CAS  Google Scholar 

  6. Lim C, Pyun SI (1993) Theoretical approach to Faradaic admittance of hydrogen absorption reaction on metal membrane electrode. Electrochim Acta 38:2645–2652

    Article  CAS  Google Scholar 

  7. Lim C, Pyun SI (1994) Impedance analysis of hydrogen absorption reaction on Pd membrane electrode in 0.1 M LiOH solution under permeable boundary conditions. Electrochim Acta 39:363–373

    Article  CAS  Google Scholar 

  8. Zhang W, Sridhar Kumar MP, Srinivasan S, Ploehn HJ (1995) Ac impedance studies on metal hydride electrodes. J Electrochem Soc 142:2935–2943

    Article  CAS  Google Scholar 

  9. Yang TH, Pyun SI (1996) Hydrogen absorption into and diffusion in palladium: ac-impedance analysis under impermeable boundary conditions. Electrochim Acta 41:843–848

    Article  CAS  Google Scholar 

  10. Yang TH, Pyun SI (1996) An investigation of the hydrogen absorption reaction into and the hydrogen evolution reaction from a Pd foil electrode. J Electroanal Chem 414:127–133

    Article  Google Scholar 

  11. Yang TH, Pyun SI (1996) A study of the hydrogen absorption reaction into α- and β-LaNi5Hx porous electrodes by using electrochemical impedance spectroscopy. J Power Sources 62:175–178

    Article  CAS  Google Scholar 

  12. Wang C (1998) Kinetic behavior of metal hydride electrode by means of ac impedance. J Electrochem Soc 145:1801–1812

    Article  CAS  Google Scholar 

  13. Montella C (1999) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion I. Diffusion formalism. J Electroanal Chem 462:73–87

    Article  CAS  Google Scholar 

  14. Montella C (2000) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion: Part II. Entry side impedance, transfer function and transfer impedance formalism. J Electroanal Chem 480:150–165

    Article  CAS  Google Scholar 

  15. Montella C (2000) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion: Part III. Comparison of entry side impedance, transfer function and transfer impedance methods. J Electroanal Chem 480:166–185

    Article  CAS  Google Scholar 

  16. Yuan X, Xu N (2002) Electrochemical and hydrogen transport kinetic performance of MINi3.75Co0.65Mn0.4Al0.2 (Ml denotes La-rich mischmetal being composed of La 61.11 wt %, Ce 27.16 wt %, Pr 3.09 wt %, and Nd 8.64 wt %) metal hydride electrodes at various temperatures. J Electrochem Soc 149:A407–A413

    Article  CAS  Google Scholar 

  17. Georén P, Hjelm AK, Lindbergh G, Lundqvist A (2003) An electrochemical impedance spectroscopy method applied to porous LiMn2O4 and metal hydride battery electrodes. J Electrochem Soc 150:A234–A241

    Article  Google Scholar 

  18. Haran BS, Popov BN, White RE (1998) Theoretical analysis of metal hydride electrodes- studies on equilibrium potential and exchange current density. J Electrochem Soc 145:4082–4090

    Article  CAS  Google Scholar 

  19. Feng F, Ping X, Zhou Z, Geng M, Han J, Northwood DO (1998) The relationship between equilibrium potential during discharge and hydrogen concentration in a metal hydride electrode. Int J Hydrogen Energy 23:599–602

    Article  CAS  Google Scholar 

  20. Conway BE, Wojtowicz J (1992) Time-scales of electrochemical desorption and sorption of H in relation to dimensions and geometries of host metal hydride electrodes. J Electroanal Chem 326:277–297

    Article  CAS  Google Scholar 

  21. Ura H, Nishina T, Uchida I (1995) Electrochemical measurements of single particles of Pd and LaNi5 with a microelectrode technique. J Electroanal Chem 396:169–173

    Article  Google Scholar 

  22. Nishina T, Ura H, Uchida I (1997) Determination of chemical diffusion coefficients in metal hydride particles with a microelectrode technique. J Electrochem Soc 144:1273–1277

    Article  CAS  Google Scholar 

  23. Kim HS, Nishizawa M, Uchida I (1999) Single particle electrochemistry for hydrogen storage alloys, MmNi3.55Co0.75Mn0.4Al0.3 (Mm: “Mischmetall”). Electrochim Acta 45:483–488

    Article  CAS  Google Scholar 

  24. Feng F, Han J, Geng M, Northwood DO (2000) Study of hydrogen transport in metal hydride electrodes using a novel electrochemical method. J Electroanal Chem 487:111–119

    Article  CAS  Google Scholar 

  25. Yuan X, Xu N (2001) Comparative study on electrochemical techniques for determination of hydrogen diffusion coefficients in metal hydride electrodes. J Appl Electrochem 31:1033–1039

    Article  CAS  Google Scholar 

  26. Kim HS, Itoh T, Nishizawa M, Mohamedi M, Umeda M, Uchida I (2002) Microvoltammetric study of electrochemical properties of a single spherical nickel hydroxide particle. Int J Hydrogen Energy 27:295–300

    Article  Google Scholar 

  27. Lee JW, Pyun SI (2005) Anomalous behaviour in diffusion impedance of intercalation electrodes. Z Metallkd 96:117–123

    CAS  Google Scholar 

  28. Lee JW, Pyun SI (2005) Anomalous behaviour of hydrogen extraction from hydride-forming metals and alloys under impermeable boundary conditions. Electrochim Acta 50:1777–1805

    Article  CAS  Google Scholar 

  29. Boes N, Züchner H (1976) Electrochemical methods for studying diffusion, permeation and solubility of hydrogen in metals. J Less-Common Met 49:223–240

    Article  CAS  Google Scholar 

  30. Subramanyan PK (1981) Electrochemical aspects of hydrogen in metals. In: Bockris JO’M, Conway BE, Yeager E, White RE (eds) Comprehensive treatise of electrochemistry, vol 4. Electrochemical materials science. Plenum, New York, p 411

    Google Scholar 

  31. Fullenwider MA (1983) Hydrogen entry and action in metals. Pergamon, New York, p 4

    Google Scholar 

  32. Pound BG (1993) Chapter 2 Electrochemical techniques to study hydrogen ingress in metals. In: Bockris JO’M, Conway BE, Yeager E, White RE (eds) Modern aspects of electrochemistry, vol 25. Plenum, New York, p 63

    Chapter  Google Scholar 

  33. Devanathan MAV, Stachurski Z (1962) The absorption and diffusion of electrolytic hydrogen in palladium. Proc R Soc Lond A 270:90–102

    Article  CAS  Google Scholar 

  34. McBreen J, Nanis L, Beck W (1966) A method for determination of the permeation rate of hydrogen through metal membranes. J Electrochem Soc 113:1218–1222

    Article  Google Scholar 

  35. Nanis L, Govindan Namboodhiri TK (1972) Mathematics of the electrochemical extraction of hydrogen from iron. J Electrochem Soc 119:691–694

    Article  CAS  Google Scholar 

  36. Early JG (1978) Hydrogen diffusion in palladium by galvanostatic charging. Acta Metall 26:1215–1223

    Article  CAS  Google Scholar 

  37. Bockris JO’M, Genshaw MA, Fullenwider M (1970) The electro-permeation of hydrogen into metals. Electrochim Acta 15:47–60

    Article  CAS  Google Scholar 

  38. Kirchheim R, McLellan RB (1980) Electrochemical methods for measuring diffusivities of hydrogen in palladium and palladium alloys. J Electrochem Soc 127:2419–2425

    Article  CAS  Google Scholar 

  39. Pyun SI, Lee WJ, Yang TH (1997) Hydrogen diffusion through palladium-gold alloy coatings electrodeposited on palladium substrate under permeable boundary condition. Thin Solid Films 311:183–189

    Article  CAS  Google Scholar 

  40. Lee WJ, Pyun SI, Yang TH, Kim JD, Baek YH, Kim HG (1997) Hydrogen transport through Pd-Ni alloy electrodeposited on Pd substrate. J Solid State Electrochem 1:120–125

    Article  CAS  Google Scholar 

  41. Pyun SI (2007) Outlines of electrochemistry at materials. Chung-Moon-Gak Book Publishing, Seoul, pp 293, 330, 359, 610, 830, 835; Kim JS, Pyun SI (2011) Comparison of transmissive permeable and reflective impermeable interfaces between electrode and electrolyte. J Solid State Electrochem 15:2447–2452

    Google Scholar 

  42. Harrington DA, Conway BE (1987) Ac impedance of Faradaic reactions involving electrosorbed intermediates – I. Kinetic theory. Electrochim Acta 32:1703–1712

    Article  CAS  Google Scholar 

  43. Raistrick ID (1990) Impedance studies of porous electrodes. Electrochim Acta 35:1579–1586

    Article  CAS  Google Scholar 

  44. Bisquert J, Garcia-Belmonte G, Bueno P, Longo E, Bulhoes LOS (1998) Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J Electroanal Chem 452:229–234

    Article  CAS  Google Scholar 

  45. Bisquert J (2000) Influence of the boundaries in the impedance of porous film electrodes. Phys Chem Chem Phys 2:4185–4192

    Article  CAS  Google Scholar 

  46. Bisquert J, Compte A (2001) Theory of the electrochemical impedance of anomalous diffusion. J Electroanal Chem 499:112–120

    Article  CAS  Google Scholar 

  47. Jamnik J, Maier J (2001) Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys Chem Chem Phys 3:1668–1678

    Article  CAS  Google Scholar 

  48. Bisquert J (2002) Analysis of the kinetics of ion intercalation: ion trapping approach to solid-state relaxation processes. Electrochim Acta 47:2435–2449

    Article  CAS  Google Scholar 

  49. Bisquert J, Vikhrenko VS (2002) Analysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochim Acta 47:3977–3988

    Article  CAS  Google Scholar 

  50. Bisquert J, Garcia-Belmonte G, Pitarch A (2003) An explanation of anomalous diffusion patterns observed in electroactive materials by impedance methods. A European J ChemPhysChem 4:287–292

    Article  CAS  Google Scholar 

  51. Boukamp BA (2004) Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid State Ionics 169:65–73

    Article  CAS  Google Scholar 

  52. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. Wiley, New York, pp 16, 54

    Book  Google Scholar 

  53. Crank J (1975) The mathematics of diffusion. Clarendon, Oxford, p 11

    Google Scholar 

  54. Kim JS, Pyun SI (2008) Theoretical and experimental approaches to oxygen reduction at porous composite electrodes for fuel cells by analyses of ac-impedance spectra and potentiostatic current transients. Isr J Chem 48:277–286

    Article  Google Scholar 

  55. Ho C, Raistrick ID, Huggins RA (1980) Application of a-c techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350

    Article  CAS  Google Scholar 

  56. Jacobsen T, West K (1995) Diffusion impedance in planar, cylindrical and spherical symmetry. Electrochim Acta 40:255–262

    Article  CAS  Google Scholar 

  57. Ding S, Petuskey WT (1998) Solutions to Fick’s second law of diffusion with a sinusoidal excitation. Solid State Ionics 109:101–110

    Article  CAS  Google Scholar 

  58. Pitarch A, Garcia-Belmonte G, Mora-Sero I, Bisquert J (2004) Electrochemical impedance spectra for the complete equivalent circuit of diffusion and reaction under steady-state recombination current. Phys Chem Chem Phys 6:2983–2988

    Article  CAS  Google Scholar 

  59. Bockris JO’M, McBreen J, Nanis L (1965) The hydrogen evolution kinetics and hydrogen entry into α-iron. J Electrochem Soc 112:1025–1031

    Article  CAS  Google Scholar 

  60. Kim CD, Wilde BE (1971) The kinetics of hydrogen absorption into iron during cathodic hydrogen evolution. J Electrochem Soc 118:202–206

    Article  CAS  Google Scholar 

  61. Iyer RN, Pickering HW, Zamanzadeh M (1989) Analysis of hydrogen evolution and entry into metals for the discharge-recombination process. J Electrochem Soc 136:2463–2470

    Article  CAS  Google Scholar 

  62. Bockris JO’M (1954) Chapter 4 Electrode kinetics. In: Bockris JO’M (ed) Modern aspects of electrochemistry, vol 1. Butterworths Scientific Publications, London, p 180

    Google Scholar 

  63. Enyo M, Maoka T (1980) The overpotential components on the palladium hydrogen electrode. J Electroanal Chem 108:277–292

    Article  CAS  Google Scholar 

  64. Cabanel R, Barral G, Diard JP, Le Gorrec B, Montella C (1993) Determination of the diffusion-coefficient of an inserted species by impedance spectroscopy- application to the H/HXNb2O5 system. J Appl Electrochem 23:93–97

    Article  CAS  Google Scholar 

  65. Armstrong RD, Henderson M (1972) Impedance plane display of a reaction with an adsorbed intermediate. J Electroanal Chem 39:81–90

    Article  CAS  Google Scholar 

  66. Bagotskaya IA (1962) Effect of the solution composition on the diffusion rate of electrolytic hydrogen through metallic diaphragms. I. Diffusion of hydrogen through iron diaphragms. Zhur Fiz Khim 36:2667–2673

    CAS  Google Scholar 

  67. Frumkin AN (1963) Chapter 5 Hydrogen overvoltage and adsorption phenomena part II. In: Delahay P (ed) Advances in electrochemistry and electrochemical engineering, vol 3. Interscience, New York, p 375

    Google Scholar 

  68. Franceschetti DR, Macdonald JR, Buck RP (1991) Interpretation of finite-length-Warburg-type impedances in supported and unsupported electrochemical cells with kinetically reversible electrodes. J Electrochem Soc 138:1368–1371

    Article  CAS  Google Scholar 

  69. Breger V, Gileadi E (1971) Adsorption and absorption of hydrogen in palladium. Electrochim Acta 16:177–190

    Article  CAS  Google Scholar 

  70. Lee JW, Pyun SI, Filipeck S (2003) The kinetics of hydrogen transport through amorphous Pd82–yNiySi18alloys (y = 0 − 32) by analysis of anodic current transient. Electrochim Acta 48:1603–1611

    Article  CAS  Google Scholar 

  71. Han JN, Pyun SI, Yang TH (1997) Roles of thiourea as an inhibitor in hydrogen absorption into palladium electrode. J Electrochem Soc 144:4266–4272

    Article  CAS  Google Scholar 

  72. Lasia A (2002) Chapter 1 Application of electrochemical impedance spectroscopy to hydrogen adsorption, evolution and absorption into metals. In: Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 35. Kluwer/Plenum, New York, p 1

    Chapter  Google Scholar 

  73. Reichman B, Bard AJ, Laser D (1980) A digital simulation model for electrochromic processes at WO3 electrodes. J Electrochem Soc 127:647–654

    Article  CAS  Google Scholar 

  74. Yayama H, Kuroki K, Hirakawa K, Tomokiyo A (1984) Electrode resistance of metal hydride in alkaline aqueous solution. Jpn J Appl Phys 23:1619–1623

    Article  CAS  Google Scholar 

  75. Brug GJ, van der Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176:275–295

    Article  CAS  Google Scholar 

  76. Macdonald JR, Schoonman J, Lehner AP (1982) Applicability and power of complex nonlinear least squares for the analysis of impedance and admittance data. J Electroanal Chem 131:77–95

    Article  CAS  Google Scholar 

  77. Bae JS, Pyun SI (1994) An ac impedance study of LiI–Al2O3 composite solid electrolyte. J Mater Sci Lett 13:573–576

    Article  CAS  Google Scholar 

  78. Bai L, Harrington DA, Conway BE (1987) Behavior of overpotential-deposited species in Faradaic reactions – II. ac Impedance measurements on H2 evolution kinetics at activated and unactivated Pt cathodes. Electrochim Acta 32:1713–1731

    Article  CAS  Google Scholar 

  79. Ekdunge P, Jüttner K, Kreysa G, Kessler T, Ebert M, Lorenz WJ (1991) Electrochemical impedance study on the kinetics of hydrogen evolution at amorphous metals in alkaline solution. J Electrochem Soc 138:2660–2668

    Article  CAS  Google Scholar 

  80. Lee SK, Pyun SI, Lee SJ, Jung KN (2007) Mechanism transition of mixed diffusion and charge transfer-controlled to diffusion-controlled oxygen reduction at Pt-dispersed carbon electrode by Pt-loading, nafion content and temperature. Electrochim Acta, 53: 740–751.

    Article  CAS  Google Scholar 

  81. Lee SJ, Pyun SI (2010) Kinetics of mixed-controlled oxygen reduction at nafion-impregnated Pt-alloy-dispersed carbon electrode by analysis of cathodic current transients. J Solid State Electrochem 14:775–786.

    Article  CAS  Google Scholar 

  82. Lasia A (2006) On the mechanism of the hydrogen absorption reaction. J Electroanal Chem 593:159–166.

    Article  CAS  Google Scholar 

  83. Birry L, Lasia A (2006) Effect of crystal violet on the kinetics of H sorption into Pd. Electrochim Acta 51: 3356–3364.

    Article  CAS  Google Scholar 

  84. Pyun SI (2007) The fundamentals of corrosion of metals and their application into practice. Chung-Moon-Gak Book Publishing, Seoul, p 566

    Google Scholar 

  85. Lee SJ, Pyun SI, Lee JW (2005) Investigation of hydrogen transport through Mm (Ni3.6Co0.7Mn0.4Al0.3)1.12 (Mm denotes a “Mischmetall”) and Zr0.65Ti0.35Ni1.2V0.4Mn0.4 hydride electrodes by analysis of anodic current transient. Electrochim Acta 50:1121–1130

    Article  CAS  Google Scholar 

  86. Pourbaix M (1974) Chapter 4 Establishment and interpretation of potential-pH equilibrium diagrams on Pd. In: Franklin JA (translated from the French) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. National Association of Corrosion Engineers, Houston, p 358

    Google Scholar 

  87. Bucur RV (1985) The influence of experimental conditions upon the measurements of hydrogen diffusion in palladium by electrochemical methods. Z Phys Chem NF 146:217–229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pyun, SI., Shin, HC., Lee, JW., Go, JY. (2012). Hydrogen Absorption into and Subsequent Diffusion Through Hydride-Forming Metals. In: Electrochemistry of Insertion Materials for Hydrogen and Lithium. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29464-8_3

Download citation

Publish with us

Policies and ethics