Skip to main content

Physical Application: The Casimir Effect

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 855))

Abstract

Although some examples and applications of the formulas for analytical continuation have already been given in the preceding chapters, in the present one we properly start with the discussion at length of the applications of the explicit zeta function regularization method. In this sense, the Casimir effect is introduced, along with the Casimir–Polder version, and its relation with the van der Waals forces, the London theory, and the generalization of the Casimir setup in terms of the very far reaching Lifshitz theory are discussed. Also the “mistery” of the Casimir effect, its local formulation and the definition of the Casimir energy in terms of the fluctuations of the quantum vacuum. All the cases we consider here precisely correspond to the situation to which we have restricted ourselves in this work, namely the case when the spectrum of the Hamiltonian of our physical system is known explicitly. Already this startpoint, that might be considered as rather particular, gives rise to enormously interesting situations from the physical viewpoint (and from the mathematical one, too), that are addressed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    One should note that in the standard situations of QFT when no coupling of the vacuum diagrams is present, one can get rid of this term by a simple determination of the origin of energies using, e.g., the normal ordering prescription. An absolutely different case is when general relativity is considered in a quantum context, provided quantum vacuum fluctuations are taken to be a ‘legal’ form of energy (see later).

References

  1. E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994)

    Book  MATH  Google Scholar 

  2. E. Elizalde, Ten Physical Applications of Spectral Zeta Functions (Springer, Berlin, 1995)

    MATH  Google Scholar 

  3. A.A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, S. Zerbini, Analytic Aspects of Quantum Fields (World Scientific, Singapore, 2003)

    Book  Google Scholar 

  4. G.H. Hardy, Mess. Math. 49, 85 (1919)

    Google Scholar 

  5. J.S. Dowker, R. Critchley, Phys. Rev. D 13, 3224 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  6. S.W. Hawking, Commun. Math. Phys. 55, 133 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. L.S. Brown, G.J. MacLay, Phys. Rev. 184, 1272 (1969)

    Article  ADS  Google Scholar 

  8. S.K. Blau, M. Visser, A. Wipf, Nucl. Phys. B 310, 163 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Elizalde, A. Romeo, Phys. Rev. D 40, 436 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  10. V.M. Mostepanenko, N.N. Trunov, Casimir Effect and Its Applications (in Russian) (Energoatomizdat, Moscow, 1990)

    Google Scholar 

  11. E. Elizalde, J. Math. Phys. 31, 170 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. Erdélyi (ed.), Higher Transcendental Functions, vol. I (McGraw-Hill, New York, 1953), p. 27

    Google Scholar 

  13. H.A. Weldon, Nucl. Phys. B 270, 79 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Actor, J. Phys. A 20, 927 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. I.J. Zucker, J. Phys. A 7, 1568 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  16. I.J. Zucker, J. Phys. A 8, 1734 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  17. I.J. Zucker, M.M. Robertson, J. Phys. A 8, 874 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  18. H.B.G. Casimir, Proc. K. Ned. Akad. Wet. B 51, 793 (1948)

    MATH  Google Scholar 

  19. H.B.G. Casimir, Physica 19, 846 (1953)

    Article  ADS  Google Scholar 

  20. G. Plunien, B. Müller, W. Greiner, Phys. Rep. 134, 87 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  21. Yu.S. Barash, V.L. Ginzburg, Electromagnetic fluctuations and molecular forces in condensed matter, in The Dielectric Function of Condensed Systems, ed. by L.V. Keldysh et al. (Elsevier, Amsterdam, 1989), pp. 389–457

    Google Scholar 

  22. H.B.G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948)

    Article  ADS  MATH  Google Scholar 

  23. E. Elizalde, A. Romeo, Am. J. Phys. 59, 711 (1991)

    Article  ADS  Google Scholar 

  24. D. van der Waals, Die Kontinuität des Garformigen und Flüssigen Zuständes (Amsterdam, 1881)

    Google Scholar 

  25. F. London, Z. Phys. 63, 245 (1930)

    Article  ADS  MATH  Google Scholar 

  26. E.M. Lifshitz, Ž. Èksp. Teor. Fiz. 29, 94 (1955) [Sov. Phys. JETP 2, 73 (1956)]

    Google Scholar 

  27. J. Bernabéu, R. Tarrach, Ann. Phys. (N.Y.) 102, 323 (1976)

    Article  ADS  Google Scholar 

  28. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Adv. Phys. 10, 165 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  29. V.A. Parsegian, B.W. Ninham, J. Chem. Phys. 52, 4578 (1970)

    Article  ADS  Google Scholar 

  30. V.A. Parsegian, B.W. Ninham, Biophys. J. 10, 646 (1970)

    Article  Google Scholar 

  31. V.A. Parsegian, B.W. Ninham, Biophys. J. 10, 664 (1970)

    Article  Google Scholar 

  32. F. Sauer, Dissertation (Universität Göttingen, 1992)

    Google Scholar 

  33. J. Mehra, Physica 37, 145 (1967)

    Article  ADS  Google Scholar 

  34. S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997); Erratum, Phys. Rev. Lett. 81, 5475 (1998)

    Article  ADS  Google Scholar 

  35. https://www.cfa.harvard.edu/~babb/casimir-bib.html

  36. E. Elizalde, S.D. Odintsov, A.A. Saharian, Phys. Rev. D 79, 065023 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  37. E. Elizalde, A.A. Saharian, T.A. Vardanyan, Phys. Rev. D 81, 124003 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  38. J. Ambjørn, S. Wolfram, Ann. Phys. (N.Y.) 147, 1 (1983)

    Article  ADS  Google Scholar 

  39. D. Dalvit et al., Casimir Physics, Lecture Notes in Physics, vol. 834 (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  40. M. Bordag et al., Advances in the Casimir Effect, International Series of Monographs on Physics, vol. 145 (Oxford Science, Oxford, 2009)

    Book  MATH  Google Scholar 

  41. K.A. Milton et al., The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific, UK, 2001)

    Book  MATH  Google Scholar 

  42. V. Mostepanenko, N.N. Trunov, The Casimir Effect and Its Applications (Oxford Science, Oxford, 1997)

    Google Scholar 

  43. P.W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic Press, New York, 1994)

    Google Scholar 

  44. M. Krech, The Casimir Effect in Critical Systems (World Scientific, UK, 1994)

    Book  Google Scholar 

  45. I. Brevik, H. Skurdal, R. Sollie, J. Phys. A 27, 6853 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Elizalde .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elizalde, E. (2012). Physical Application: The Casimir Effect. In: Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29405-1_5

Download citation

Publish with us

Policies and ethics