Skip to main content

Nanotechnology in Ophthalmic Drug Delivery

  • Chapter
  • First Online:
Book cover Patenting Nanomedicines

Abstract

Conventional ophthalmic dosage forms are easy to prepare, administer, and their manufacture cost is relatively low. However, aqueous eye solutions suffer from very short contact time with the ocular surface and fast nasolacrimal drainage, both leading to poor bioavailability of the drug. Ointments have visibility and patient acceptably problems whereas suspensions often give rise to unpredictable and variable ocular bioavailability. To address the shortfalls of conventional ophthalmic dosage forms, nanotechnology-based systems have been investigated and some of which have been developed into marketed product. The present chapter overviews the emerging role of nanotechnology in ophthalmic drug delivery with emphasis on what has been patented over the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkader H, Patel DV, McGhee CN, Alany RG (2011a) New therapeutic approaches in the treatment of diabetic keratopathy: a review. Clin Experiment Ophthalmol 39(3):259–270

    Article  Google Scholar 

  • Abdelkader H, Ismail S, Kamal A, Alany RG (2011b) Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 100(5):1833–1846

    Article  Google Scholar 

  • Abdelkader H, Wu Z, Al-Kassas R, Brown JE, Alany RG (2011c) Preformulation characteristics of the opioid growth factor antagonist-naltrexone hydrochloride: stability and lipophilicity studies. J Drug Deliv Sci Technol 21(2):157–163

    Google Scholar 

  • Abdelkader H, Patel D, Mcghee C, Alany RG (2011d) New therapeutic approaches in the treatment of neurotrophic keratopathy. Clin Experiment Ophthalmol 39:259–270

    Article  Google Scholar 

  • Ahmed I, Patton TF (1985) Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci 26(4):584–587

    Google Scholar 

  • Alany RG, Rades T, Nicoll J, Tucker IG, Davies NM (2006) Water in oil microemulsions for ocular drug delivery: evaluation of ocular irritation and precorneal retention. J Control Release 111:145–152

    Article  Google Scholar 

  • Bell SJD, He Q, Chu T, Potter DE (2004) Intraocular delivery compositions and methods. World Patent 2004/050065

    Google Scholar 

  • Bhadra D, Bhadra S, Jain S, Jain NK (2003) A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm 257(1–2):111–124

    Article  Google Scholar 

  • Bill A, Sperber G, Ujiie K (1983) Physiology of the choroidal vascular bed. Int Ophthalmol 6(2):101–107

    Article  Google Scholar 

  • Budai L, Hajdú M, Budai M, Gróf P, Béni S, Noszál B et al (2007) Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm 343(1–2):34–40

    Article  Google Scholar 

  • Cavalli R, Morel S, Gasco MR, Chetoni P, Saettone MF (1995) Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int J Pharm 117(2):243–246

    Article  Google Scholar 

  • Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238(1–2):241–245

    Article  Google Scholar 

  • Chan J, Craig JP, Elmaghraby GMM, Alany RG (2007) Phase transition water - in - oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation. Int J Pharm 328(1):65–71

    Article  Google Scholar 

  • Chan J, Craig JP, Elmaghraby GMM, Alany RG (2008) Effect of water - in - oil microemulsions and lamellar liquid crystalline systems on the precorneal tear film of albino New Zealand rabbits. Clin Ophthalmol 2(1):1–9

    Google Scholar 

  • Chang JN (2010) Recent advances in ophthalmic drug delivery. In: Kulkarni VS (ed) Handbook of non-invasive drug delivery systems, 1st edn. Elsevier, Burlington

    Google Scholar 

  • Chen H, Khemtong C, Yang X, Chang X, Gao J (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 16(7–8):354–360

    Article  Google Scholar 

  • Constantinides PP, Chaubal MV, Shorr R (2008) Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev 60(6):757–767

    Article  Google Scholar 

  • Cunha-Vaz J (1979) The blood-ocular barriers. Surv Ophthalmol 23(5):279–296

    Article  Google Scholar 

  • Diebold Y, Calonge M (2010) Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 29(6):596–609

    Article  Google Scholar 

  • Ding S (1998) Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today 1(8):328–335

    Article  Google Scholar 

  • Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB (2010) Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. Invest Ophthalmol Vis Sci 51(11):5804–5816

    Article  Google Scholar 

  • Duvvuri S, Majumdar S, Mitra AK (2003) Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 3(1):45–56

    Article  Google Scholar 

  • El-Gazayerly ON, Hikal AH (1997) Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int J Pharm 158(2):121–127

    Article  Google Scholar 

  • European Medical Research Councils (EMRC) (2005) Nanomedicine, An ESF – Forward Look report

    Google Scholar 

  • Felt O, Furrer P, Mayer JM, Plazonnet B, Buri P, Gurny R (1999) Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int J Pharm 180(2):185–193

    Article  Google Scholar 

  • Franks A (1987) Nanotechnology. J Phys E Sci Instrum 20(12):1442

    Article  Google Scholar 

  • Freedman KA, Klein JW, Crosson CE (1993) Beta-cyclodextrins enhance bioavailability of pilocarpine. Curr Eye Res 12(7):641–647

    Article  Google Scholar 

  • Galan Valdivia FJ, Coll Dachs A, Carreras Perdiguer N (2003) Nanoemulsion of the oil in water type, useful as an ophthalmic vehicle and process for the preparation thereof. European Patent 0696452 B1

    Google Scholar 

  • Gasco MR (2005) Nanoparticles as vehicles for nucleic acids, process for their preparation and use. World Patent 2005/120469

    Google Scholar 

  • Gasco MR, Zara GP, Saettone MF (2005) Pharmaceutical compositions suitable for the treatment of ophthalmic diseases. World Patent 2004/039351

    Google Scholar 

  • Grinstaff MW, Carnahan MA (2006) Dendritic polymers, crosslinked gels, and their uses as ophthalmic sealants and lenses. World Patent 2006/031358

    Google Scholar 

  • Gurny R (1981) Preliminary study of prolonged acting drug delivery system for the treatment of glaucoma. Pharm Acta Helv 56(4–5):130–132

    Google Scholar 

  • Gurny R, Boye T, Ibrahim H (1985) Ocular therapy with nanoparticulate systems for controlled drug delivery. J Control Release 2:353–361

    Article  Google Scholar 

  • Guyton AC, Hall JE (2006) The Eye: II. Receptor and neural function of the retina. Textbook of medical physiology, 11th edn. Elsevier, New York

    Google Scholar 

  • Hamalainen KM, Kananen K, Auriola S, Kontturi K, Urtti A (1997) Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci 38(3):627–634

    Google Scholar 

  • Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60(15):1638–1649

    Article  Google Scholar 

  • Hara H, Takeuchi H (2010) Liposome for delivery to posterior segment of eye and pharmaceutical composition for disease in posterior segment of eye. European Patent 2255788 A1

    Google Scholar 

  • Harush-Frenkel O, Altschuler Y, Benita S (2008) Nanoparticle-cell interactions: drug delivery implications. Crit Rev Ther Drug Carrier Syst 25(6):485–544

    Article  Google Scholar 

  • Hofland H, Bongianni J, Wheeler T (2004) Ophthalmic liposome compositions and uses thereof. United States Patent 2004/0224010 A1

    Google Scholar 

  • Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60(2):207–225

    Article  Google Scholar 

  • Huang AJ, Tseng SC, Kenyon KR (1989) Paracellular permeability of corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci 30(4):684–689

    Google Scholar 

  • Ihre HR, Padilla De Jesus OL, Szoka FC Jr, Frechet JM (2002) Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug Chem 13(3):443–452

    Article  Google Scholar 

  • Janoria KG, Gunda S, Boddu SHS, Mitra AK (2007) Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 4(4):371–388

    Article  Google Scholar 

  • Jumbe NL, Miller MH (2003) Ocular drug transfer following systemic drug administration. In: Mitra AK (ed) Ophthalmic drug delivery systems, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Kaur IP, Garg A, Singla AK, Aggarwal D (2004) Vesicular systems in ocular drug delivery: an overview. Int J Pharm 269(1):1–14

    Article  Google Scholar 

  • Kayser O, Lemke A, Hernandez-Trejo N (2005) The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 6(1):3–5

    Google Scholar 

  • Ketelson HA, Meadows DL (2003a) Synthetic inorganic nanoparticles as carriers for ophthalmic and otic drugs. World Patent 2003/059194

    Google Scholar 

  • Ketelson HA, Meadows DL (2003b) Nanoparticles as carriers for biocides in ophthalmic compositions. World Patent 2003/059193

    Google Scholar 

  • Klein HZ, Lugo M, Shields MB, Leon J, Duzman E (1985) A dose–response study of piloplex for duration of action. Am J Ophthalmol 99(1):23–26

    Google Scholar 

  • Krauland AH, Leitner VM, Bernkop-Schnurch A (2003) Improvement in the in situ gelling properties of deacetylated gellan gum by the immobilization of thiol groups. J Pharm Sci 92:1234–1241

    Article  Google Scholar 

  • Kyyronen K, Urtti A (1990) Improved ocular: systemic absorption ratio of timolol by viscous vehicle and phenylephrine. Invest Ophthalmol Vis Sci 31(9):1827–1833

    Google Scholar 

  • Lang JC (1995) Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev 16(1):39–43

    Article  Google Scholar 

  • Laroche L, Arrata M, Brasseur G, Lagoutte F, Le Mer Y, Lumbroso P et al (1991) Treatment of dry eye syndrome with lachrymal gel: a randomized multicenter study. J Fr Ophtalmol 14(5):321–326

    Google Scholar 

  • Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R (1998) Ophthalmic drug delivery systems—recent advances. Prog Retin Eye Res 17(1):33–58

    Article  Google Scholar 

  • Lee VHL (1983) Esterase activities in adult rabbit eyes. J Pharm Sci 72(3):239–244

    Article  Google Scholar 

  • Lee VH, Robinson JR (1986) Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol 2(1):67–108

    Article  Google Scholar 

  • Liu J, Lai C, Tseng Y, Guo LSS, Hong K (2007) Liposome composition for delivery of a therapeutic agent to eyes. United States Patent 2007/0275048 A1

    Google Scholar 

  • Loftsson T, Järvinen T (1999) Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Rev 36(1):59–79

    Article  Google Scholar 

  • Loftsson T, Stefansson E (1997) Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm 23(5):473–481

    Article  Google Scholar 

  • Loftsson T, Stefansson E (2002) Cyclodextrins in eye drop formulations: enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol Scand 80(2):144–150

    Article  Google Scholar 

  • Loftsson T, Stefansson E (2007) Cyclodextrin nanotechnology for ophthalmic drug delivery. World Patent 2007/012974

    Google Scholar 

  • Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57(11):1595–1639

    Article  Google Scholar 

  • Ludwig A, Van Ooteghem M (1987) The influence of the osmolality on the precorneal retention of ophthalmic solutions. J Pharm Belg 42(4):259–266

    Google Scholar 

  • Lyons RT (2004) Disinfecting and solubilizing steroid compositions. Patent 1385528

    Google Scholar 

  • Mainardes RM, Silva LP (2004) Drug delivery systems: past, present, and future. Curr Drug Targets 5(5):449–455

    Article  Google Scholar 

  • Marano RJ, Toth I, Wimmer N, Brankov M, Rakoczy PE (2005) Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther 12(21):1544–1550

    Article  Google Scholar 

  • Marchal-Heussler L, Maincent P, Hoffman M, Spittler J, Couvreur P (1990) Antiglaucomatous activity of betaxolol chlorhydrate sorbed onto different isobutylcyanoacrylate nanoparticle preparations. Int J Pharm 58:115–122

    Article  Google Scholar 

  • Marchal-Heussler L, Sirbat D, Hoffman M, Maincent P (1991) Nanocapsules de P-bloquants, unnouveau vecteur de mkdicaments en ophthalmologie. J Fr Ophtalmol 14:371–375

    Google Scholar 

  • Marchal-Heussler L, Fessi H, Devissaguet JP, Hoffman M, Maincent P (1992) Colloidal drug delivery systems for the eye: a comparison of the efficacy of three different polymers: PolYisobutylcyanoacrylate, polylactic-co-glycolic acid, polyepsilon- caprolacton. STP Pharma Sci 2:98–104

    Google Scholar 

  • Marchal-Heussler L, Sirbat D, Hoffman M, Maincent P (1993) Poly(ε-Caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm Res 10(3):386–390

    Article  Google Scholar 

  • Maurice DM, Srinivas SP (1992) Use of fluorometry in assessing the efficacy of a cation-sensitive gel as an ophthalmic vehicle: comparison with scintigraphy. J Pharm Sci 81(7):615–619

    Article  Google Scholar 

  • Mikkelson TJ, Chrai SS, Robinson JR (1973) Altered bioavailability of drugs in the eye due to drug-protein interaction. J Pharm Sci 62(10):1648–1653

    Article  Google Scholar 

  • Miller SC, Donovan MD (1982) Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits. Int J Pharm 12:147–152

    Article  Google Scholar 

  • Muchtar S, Almog S, Torracca MT, Saettone MF, Benita S (1992) A submicron emulsion as ocular vehicle for delta-8-tetrahydrocannabinol: effect on intraocular pressure in rabbits. Ophthalmic Res 24(3):142–149

    Article  Google Scholar 

  • Muchtar S, Abdulrazik M, Frucht-Pery J, Benita S (1997) Ex-vivo permeation study of indomethacin from a submicron emulsion through albino rabbit cornea. J Control Release 44(1):55–64

    Article  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  Google Scholar 

  • Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136(1):2–13

    Article  Google Scholar 

  • Nanjawade BK, Manvi FV, Manjappa AS (2007) In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Release 122(2):119–134

    Article  Google Scholar 

  • Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF (1998) Human sclera: thickness and surface area. Am J Ophthalmol 125(2):237–241

    Article  Google Scholar 

  • Padilla De Jesus OL, Ihre HR, Gagne L, Frechet JM, Szoka FC (2002) Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug Chem 13(3):453–461

    Article  Google Scholar 

  • Panmai S, Alani LL (2006) Ophthalmic nanoparticulate formulation of a cyclooxygenase-2 selective inhibitor. World Patent 2006/062875

    Google Scholar 

  • Prausnitz MR, Noonan JS (1998) Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 87(12):1479–1488

    Article  Google Scholar 

  • Prow TW (2010) Toxicity of nanomaterials to the eye. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(4):317–333

    Article  Google Scholar 

  • Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19(9):1310–1316

    Article  Google Scholar 

  • Raju HB, Goldberg JL (2008) Nanotechnology for ocular therapeutics and tissue repair. Expert Rev Ophthalmol 3(4):431–436

    Article  Google Scholar 

  • Ravi N, Ali AH (2005) Hydrogel nanocompsites for ophthalmic applications. World Patent 2005/023331

    Google Scholar 

  • Robinson JR, Mlynek GM (1995) Bioadhesive and phase-change polymers for ocular drug delivery. Adv Drug Deliv Rev 16(1):45–50

    Article  Google Scholar 

  • Rupenthal ID, Alany RG (2008) Ocular drug delivery. In: Gad SC (ed) Pharmaceutical manufacturing handbook: production and processes. John Wiley & Sons, Inc, New York

    Google Scholar 

  • Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8(24):1112–1120

    Article  Google Scholar 

  • Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13(3–4):144–151

    Article  Google Scholar 

  • Sasaki H, Yamamura K, Nishida K, Nakamura J, Ichikawa M (1996) Delivery of drugs to the eye by topical application. Prog Retin Eye Res 15(2):583–620

    Article  Google Scholar 

  • Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M et al (1999) Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst 16(1):85–146

    Article  Google Scholar 

  • Sawhney AS, Ransone WHII (2010) Hydrogel polymeric compositions and methods. World Patent 2009/008946

    Google Scholar 

  • Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154(2):123–140

    Article  Google Scholar 

  • Simonnet J-T (2006) Cosmetic nanoemulsion comprising hydroxylated urea compound. Patent 1690522

    Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    Article  Google Scholar 

  • Sultana Y, Jain R, Aqil M, Ali A (2006) Review of ocular drug delivery. Curr Drug Deliv 3(2):207–217

    Article  Google Scholar 

  • Sun BK, Cha KH, No JW (2011) Ophthalmic nanoemulsion composition containing cyclosporine for treating ophthalmoxerosis. Patent 101008189

    Google Scholar 

  • Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG (2011) Drug delivery to the posterior segment of the eye. Drug Discov Today 16(5–6):270–277

    Article  Google Scholar 

  • Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135

    Article  Google Scholar 

  • Usayapant A, Karara AH, Narurkar MM (1991) Effect of 2-hydroxypropyl-beta-cyclodextrin on the ocular absorption of dexamethasone and dexamethasone acetate. Pharm Res 8(12):1495–1499

    Article  Google Scholar 

  • Van Ooteghem MMM (1993) Formulation of ophthalmic solutions and suspensions. Problems and Advantages. In: Edman P (ed) Biopharmaceutics of ocular drug delivery. CRC Press, Boca Raton

    Google Scholar 

  • Vandamme T (2003) Use of dendrimers in an ophthalmic composition. World Patent 2003/030913

    Google Scholar 

  • Vandervoort J, Ludwig A (2007) Ocular drug delivery: nanomedicine applications. Nanomedicine 2(1):11–21

    Article  Google Scholar 

  • Vasir JK, Reddy MK, Labhasetwar V (2005) Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 1:47–64

    Article  Google Scholar 

  • Watson PG, Young RD (2004) Scleral structure, organisation and disease. A review. Exp Eye Res 78(3):609–623

    Article  Google Scholar 

  • Wei G, Lu W, Li C, Xie C (2010) Biological adhesive liposome preparation for eyes and preparation method thereof. Patent 101669909 A

    Google Scholar 

  • Wiesel TN, Raviola E (1977) Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature 266(5597):66–68

    Article  Google Scholar 

  • Wissing SA, Kayser O, Müller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272

    Article  Google Scholar 

  • Zarbin MA, Montemagno C, Leary JF, Ritch R (2010) Nanotechnology in ophthalmology. Can J Ophthalmol 45(5):457–476

    Article  Google Scholar 

  • Zimmer A, Kreuter J (1995) Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev 16(1):61–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raid G. Alany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Al-Kinani, A.A., Calabrese, G., Vangala, A., Naughton, D., Alany, R.G. (2012). Nanotechnology in Ophthalmic Drug Delivery. In: Souto, E. (eds) Patenting Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29265-1_9

Download citation

Publish with us

Policies and ethics