Skip to main content

Biosensors Based on Field-Effect Devices

  • Chapter
  • First Online:

Abstract

This chapter brings an overview on the use of field-effect devices (FEDs) in biochemical sensors, emphasizing their advantages and specificity for biosensing, which is typical of such semiconductor-based device. Following the introductory sections on operation principles and comparison with field-effect transistors, we concentrate on different types of FEDs and their detection methods. In particular, we shall focus on ion-sensitive field-effect transistor (ISFET), electrolyte-insulator-semiconductor (EIS), light-addressable potentiometric sensor, extended-gate field-effect transistor (EGFET) and separative extended-gate field-effect transistor (SEGFET). Important contributions in the literature in biochemical sensors based on such devices are highlighted. A discussion is also provided on how the functionalization of these devices with nanostructured films can result in sensors with increased sensitivity and selectivity. Examples of modified devices containing polyelectrolytes, metallic nanoparticles, carbon nanotubes, and other compounds, used for detecting a variety of analytes, will be provided. We discuss the concepts involved in the operation principles and the particularity of different FEDs. The prospects for clinical diagnosis with such biosensors and environment monitoring are also addressed. Moreover, strategies to improve sensing properties through functionalization are placed on, particularly with synergistic combination of organic and inorganic materials. For example, nanostructured films containing carbon nanotubes exhibited enhanced performance in biosensing. It is expected that this chapter may provide researchers with an alternative sensing platform to study new biochemical sensors concepts for specific applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Turner, A.P.F.: Biochemistry—biosensors sense and sensitivity. Science 290, 1315–1317 (2000)

    Article  CAS  Google Scholar 

  2. Kubik, T., Bogunia-Kubik, K., Sugisaka, M.: Nanotechnology on duty in medical applications. Curr. Pharm. Biotech. 6, 17–33 (2005)

    CAS  Google Scholar 

  3. Vaseashta, A., Vaclavikova, M., Vaseashta, S., Gallios, G., Roy, P., Pummakarnchana, O.: Nanostructures in environmental pollution detection, monitoring, and remediation. Sci. Tech. Adv. Mater. 8, 47–59 (2007)

    Article  CAS  Google Scholar 

  4. Siqueira, Jr., J. R., Caseli, L., Crespilho, F. N., Zucolotto, V., Oliveira, Jr., O. N.: Biosens. Bioelectron. 25, 1254 (2010)

    Google Scholar 

  5. Schoning, M.J.: “Playing around” with field-effect sensors on the basis of EIS structures. LAPS and ISFETs. Sensors 5, 126–138 (2005)

    Google Scholar 

  6. Schoning, M.J., Poghossian, A.: Bio FEDs (field-effect devices): state-of-the-art and new directions. Electroanal 18, 1893–1900 (2006)

    Article  Google Scholar 

  7. Poghossian, A., Schöning, M.J.: Silicon-based chemical and biological field-effect devices. In: Grimes, C.A., Dichey, E.C., Pishko, M.V. (eds.) Encyclopedia of Sensors, vol. 9, pp. 463–533. American Scientific Publishers, Stevenson Ranch (2006)

    Google Scholar 

  8. Chaniotakis, N., Sofikiti, N.: Novel semiconductor materials for the development of chemical sensors and biosensors: a review. Anal. Chim. Acta 615, 1–9 (2008)

    Article  CAS  Google Scholar 

  9. Cui, Y., Wei, Q.Q., Park, H.K., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001)

    Article  CAS  Google Scholar 

  10. Keren, K., Berman, R.S., Buchstab, E., Sivan, U., Braun, E.: DNA-Templated Carbon Nanotube Field-Effect Transistor. Science 302, 1380–1382 (2003)

    Article  CAS  Google Scholar 

  11. Crespilho, F.N., Ghica, M.E., Florescu, M., Nart, F.C., Oliveira, Jr., O.N., Brett, C.M.A.: A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem. Comm. 8, 1665–1670 (2006)

    Google Scholar 

  12. Crespilho, F.N., Zucolotto, V., Brett, C.M.A., Oliveira, Jr., O.N., Nart, F.C.: Enhanced charge transport and incorporation of redox mediators in layer-by-layer films containing PAMAM-encapsulated gold nanoparticles. J. Phys. Chem. B 110, 17478–17483 (2006)

    Google Scholar 

  13. Patolsky, F., Timko, B.P., Zheng, G.F., Lieber, C.M.: Nanowire-based nanoelectronic devices in the life sciences. Mrs Bulletin 32, 142–149 (2007)

    Article  CAS  Google Scholar 

  14. Merkoci, A.: Nanobiomaterials in electroanalysis. Electroanal 19, 739–741 (2007)

    Article  CAS  Google Scholar 

  15. Crespilho, F.N., Ghica, M.E., Gouveia-Caridade, C., Oliveira, Jr., O.N., Brett, C.M.A.: Enzyme immobilization on electroactive nanostructured membranes (ENM): Optimised architectures for biosensing. Talanta 76, 922–928 (2008)

    Google Scholar 

  16. Crespilho, F.N., Lanfredi, A.J.C., Leite, E.R., Chiquito, A.J., 2009. Development of individual semiconductor nanowire for bioelectrochemical device at low overpotential conditions. Electrochem. Comm. 11, 1744–1747 (2009)

    Google Scholar 

  17. Willner, I., Willner, B.: Biomolecule-Based Nanomaterials and Nanostructures. Nano Lett. 10, 3805–3815 (2010)

    Article  CAS  Google Scholar 

  18. Katz, E., Willner, I.: Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. Chemphyschem 5(8), 1085–1104 (2004)

    Google Scholar 

  19. Balasubramanian, K., Burghard, M.: Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385, 452–468 (2006)

    Article  CAS  Google Scholar 

  20. Allen, B.L., Kichambare, P.D., Star, A.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19, 1439–1451 (2007)

    Article  CAS  Google Scholar 

  21. Kima, S.N., Rusling, J.F., Papadimitrakopoulos, F.: Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 19, 3214–3228 (2007)

    Article  Google Scholar 

  22. Siqueira, Jr., J.R., Gasparotto, L.H.S., Oliveira, Jr., O.N., Zucolotto, V.: Processing of electroactive nanostructured films incorporating carbon nanotubes and phthalocyanines for sensing. J. Phys. Chem. C 112, 9050–9055 (2008)

    Google Scholar 

  23. Decher, G., Hong, J.D., Schmitt, J.: Buildup of ultrathin multilayer films by a self-assembly process 3. consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210, 831–835 (1992)

    Article  Google Scholar 

  24. Hammond, P.T.: Form and function in multilayer assembly: new applications at the nanoscale. Adv. Mater. 16, 1271–1293 (2004)

    Article  CAS  Google Scholar 

  25. Tangh, Z.Y., Wang, Y., Podsiadlo, P., Kotov, N.A.: Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 18, 3203–3224 (2006)

    Article  Google Scholar 

  26. Ariga, K., Hill, J.P., Ji, Q.M.: Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 9, 2319–2340 (2007)

    Article  CAS  Google Scholar 

  27. Lutkenhaus, J.L., Hammond, P.T.: Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3, 804–816 (2007)

    Article  CAS  Google Scholar 

  28. Quinn, J.F., Johnston, A.P.R., Such, G.K., Zelikin, A.N., Caruso, F.: Next generation, sequentially assembled ultrathin films: Beyond electrostatics. Chem. Soc. Rev. 36, 707–718 (2007)

    Article  CAS  Google Scholar 

  29. Ariga, K., Hill, J.P., Lee, M.V., Vinu, A., Charvet, R., Acharya, S.: Challenges and breakthroughs in recent research on self-assembly. Sci. Technol. Adv. Mater. 9, 014109 (2008)

    Article  Google Scholar 

  30. Ariga, K., Ji, Q.M., Hill, J.P.: Modern Techniques for Nano- and Microreactors-Reactions, p. 51, Springer-Verlag Berlin, Berlin (2010).

    Google Scholar 

  31. Li, M., Ishihara, S., Akada, M., Liao, M., Sang, L., Hill, J.P., Krishnan, V., Ma, Y., Ariga, K.: Electrochemical-coupling layer-by-layer (ECC-LbL) assembly. J. Am. Chem. Soc. 133, 7348–7351 (2011)

    Article  CAS  Google Scholar 

  32. Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007)

    Article  CAS  Google Scholar 

  33. Bergveld, P.: Thirty years of ISFETOLOGY—What happened in the past 30 years and what may happen in the next 30 years. Sens. Actuat. B 88, 1–20 (2003)

    Article  Google Scholar 

  34. Poghossian, A.S.: Method of fabrication of ISFETs and CHEMFETs on a Si-SiO2-Si structure. Sens. Actuat. B 13–14, 653–654 (1993)

    Article  Google Scholar 

  35. Matsuo, T., Esashi, M.: Method of ISFET fabrication. Sens. Actuat. B 1, 77–96 (1981)

    Article  CAS  Google Scholar 

  36. Liao, H.K., Chia, L.L., Chou, J.C., Chung, W.Y., Sun, T.P., Hsiung, S.K.: Study on pHpzc and surface potential of tin oxide gate ISFET. Mat. Chem. Phys. 59, 6–11 (1999)

    Article  CAS  Google Scholar 

  37. Batista, P.D., Mulato, M.: ZnO extended-gate field-effect transistors as pH sensors, Appl. Phys. Lett. 87, 143508/1-3 (2005)

    Google Scholar 

  38. Guerra, E.M., Silva, G.R., Mulato, M.: Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol-gel method. Solid State Sci. 11, 456–460 (2009)

    Article  CAS  Google Scholar 

  39. Batista, P.D., Mulato, M.: Polycrystalline fluorine-doped tin oxide as sensoring thin film in EGFET pH sensor. J. Mater. Sci. 45, 5478–5481 (2010)

    Article  CAS  Google Scholar 

  40. Sastre, A., Bassoul, P., Fretigny, C., Simon, J., Roger, J.P., Thami, T.: A mesomorphic amphiphilic phthalocyanine derivative used for the functionalization of the grid surface of a field effect transistor, New J. Chem. 569–578 (1988)

    Google Scholar 

  41. Hsu, H.Y., Wu, C.Y., Lee, H.C., Lin, J.L., Chin, Y.L., Sun, T.P.: Sodium and potassium sensors based on separated extended gate field effect transistor. Biomed. Eng. Appl. Basis Commun. 21, 441–444 (2009)

    Article  CAS  Google Scholar 

  42. Lin, J.L., Hsu, H.Y.: Study of sodium ion selective electrodes and differential structures with anodized indium tin oxide. Sensors 10, 1798–1809 (2010)

    Article  CAS  Google Scholar 

  43. Xue, W., Cui, T.: A thin-film transistor based acetylcholine sensor using self-assembled carbon nanotubes and SiO2 nanoparticles. Sens. Act. B 134, 981–987 (2008)

    Article  Google Scholar 

  44. Fernandes, E.G.R., Vieira, N.C.S., de Queiroz, A.A.A., Guimarães, F.E.G.: Immobilization of poly(propylene imine) dendrimer/Nickel phthalocyanine as nanostructured multilayer films to be used as gate membranes for SEGFET pH sensors. J. Phys. Chem. C 114, 6478–6483 (2010)

    Article  CAS  Google Scholar 

  45. Vieira, N.C.S., Figueiredo, A., de Queiroz, A.A.A., Zucolotto, V., Guimarães, F.E.G.: Self-assembled of dendrimers and metallophthalocyanines as FET-based glucose biosensors. Sensors 11, 9442–9449 (2011)

    Article  CAS  Google Scholar 

  46. Jaffrezic-Renault, N.: New trends in biosensors for organophosphorus pesticides. Sensors 1, 60–74 (2001)

    Article  Google Scholar 

  47. Lee, H.C., Wu, W.Y., Lin, J.L., Chin, Y.L., Lee, K.Y., Sun, T.P.: Evolution of the TiO2 membrane on ITO PET substrate applied to a lactate biosensor using potentiometric differential readout circuit. IEEE Sens. Conf. 898–901 (2008)

    Google Scholar 

  48. Lee, S.W., Kim, B.S., Chen, S., Shao-Horn, Y., Hammond, P.T.: Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671–679 (2009)

    Article  CAS  Google Scholar 

  49. Siqueira, Jr., J.R., Crespilho, F.N., Zucolotto, V., Oliveira, Jr., O.N.: Bifunctional electroactive nanostructured membranes. Electrochem. Comm. 9, 2676–2680 (2007)

    Google Scholar 

  50. Lvov, Y., Ariga, K., Ichinose, I., Kunitake, T.: Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 117, 6117–6123 (1995)

    Article  CAS  Google Scholar 

  51. Zucolotto, V., Daghastanli, K.R.P., Hayaaka, C.O., Riul, Jr., A., Ciancaglini, P., Oliveira, Jr., O. N.: Using capacitance measurements as the detection method in antigen-containing layer-by-layer films for biosensing. Anal. Chem. 79, 2163–2167 (2007)

    Google Scholar 

  52. Mertens, J., Rogero, C., Calleja, M., Ramos, D., Martin-Gago, J.A., Briones, C., Tamayo, J.: Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat. Nanotech. 3, 301–307 (2008)

    Article  CAS  Google Scholar 

  53. Siqueira, Jr., J.R., Gasparotto, L.H.S., Crespilho, F.N., Carvalho, A.J.F., Zucolotto, V., Oliveira, Jr., O.N.: Physicochemical properties and sensing ability of metallophthalocyanines/chitosan nanocomposites. J. Phys. Chem. B 110, 22690–22694 (2006)

    Google Scholar 

  54. Krämer, M., Pita, M., Zhou, J., Ornatska, M., Poghossian, A., Schöning, M.J., Katz, E.: Coupling of biocomputing systems with electronic chips: electronic interface for transduction of biochemical information. J. Phys. Chem. C 113, 2573–2579 (2009)

    Article  Google Scholar 

  55. Zucolotto, V., Pinto, A.P.A., Tumolo, T., Moraes, M.L., Baptista, M.S., Riul, Jr., A., Araujo, A.P.U., Oliveira, Jr., O.N.: Catechol biosensing using a nanostructured layer-by-layer film containing Cl-catechol 1,2-dioxygenase. Biosens. Bioelectron. 21, 1320–1326 (2006)

    Google Scholar 

  56. Perinotto, A.C., Caseli, L., Hayasaka, C.O., Riul, Jr., A., Oliveira, Jr., O.N., Zucolotto, V.: Dendrimer-assisted immobilization of alcohol dehydrogenase in nanostructured films for biosensing: Ethanol detection using electrical capacitance measurements. Thin Solid Films 516, 9002–9005 (2008)

    Google Scholar 

  57. Crespilho, F.N., Iost, R.M., Travain, S.A., Oliveira, Jr., O.N., Zucolotto, V.: Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens. Bioelectron. 24, 3073–3077 (2009)

    Google Scholar 

  58. Poghossian, A., Abouzar, M.H., Amberger, F., Mayer, D., Han, Y., Ingebrandt, S., Offenhausser, A., Schoning, M.J.: Field-effect sensors with charged macromolecules: Characterisation by capacitance-voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods. Biosens. Bioelectron. 22, 2100–2107 (2007)

    Article  CAS  Google Scholar 

  59. Poghossian, A., Abouzar, M.H., Sakkari, M., Kassab, T., Han, Y., Ingebrandt, S., Offenhausser, A., Schoning, M.J.: Field-effect sensors for monitoring the layer-by-layer adsorption of charged macromolecules. Sens. Actuat. B 118, 163–170 (2006)

    Article  Google Scholar 

  60. Poghossian, A., Ingebrandt, S., Abouzar, M.H., Schoning, M.J.: Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation. Appl. Phys. A-Mater. 87, 517–524 (2007)

    Article  CAS  Google Scholar 

  61. Wagner, T., Rao, C., Kloock, J.P., Yoshinobu, T., Otto, R., Keusgen, M., Schöning, M.J.: “LAPS Card”—A novel chip card-based light-addressable potentiometric sensor (LAPS). Sens. Actuat. B 118, 33–40 (2006)

    Article  Google Scholar 

  62. Wagner, T., Yoshinobu, T., Rao, C.W., Otto, R., Schöning, M.J.: “All-in-one” solid-state device based on a light-addressable potentiometric sensor platform. Sens. Actuat. B 117, 472–479 (2006)

    Article  Google Scholar 

  63. Van Der Spiegel, J., Lauks, I., Chan, P., Babic, D.: The extended gate chemical sensitive field effect transistor as multi-species microprobe. Sens. Actuat. B 4, 291–298 (1983)

    Article  Google Scholar 

  64. Yate, D.E., Levine, S., Healy, T.W.: Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 1(70), 1807–1818 (1974)

    Google Scholar 

  65. A. J. Bard and Faulkner, Electrochemical methods fundamentals and applications, John Wiley & Sons, New York, 1980.

    Google Scholar 

  66. Chou, J.C., Kwan, P.K., Chen, Z.J.: SnO2 Separative Structure Extended Gate H+-Ion Sensitive Field Effect Transistor by the Sol–Gel Technology and the Readout Circuit Developed by Source Follower. Jpn. J. Appl. Phys. 42, 6790–6794 (2003)

    Article  CAS  Google Scholar 

  67. Janata, J.: Electrochemistry of chemically sensitive field effect transistors. Sens. Actuat. B 4, 255–265 (1983)

    Article  CAS  Google Scholar 

  68. Yin, L.T., Chou, J.C., Chung, W.Y., Sun, T.P., Hsiung, S.K.: Study on all-solid-state chloride sensor based on tin oxide/indium tin oxide glass. Jpn. J. Appl. Phys. 50, 037001–037009 (2011)

    Article  Google Scholar 

  69. Batista, P.D., Mulato, M., Graeff, C.F.O., Fernandez, F.J.R., Marques, F.D.: SnO2 extended gate field-effect transistor as pH sensor. Braz. J. Phys. 36, 478–481 (2006)

    Article  CAS  Google Scholar 

  70. Guerra, E.M., Mulato, M.: Synthesis and characterization of vanadium oxide/hexadecylamine membrane and its application as pH-EGFET sensor. J. Sol–Gel Sci. Technol. 52, 315–320 (2009)

    Article  CAS  Google Scholar 

  71. Guidelli, E.J., Guerra, E.M., Mulato, M.: Ion sensing properties of vanadium/tungsten mixed oxides. Mat. Chem. Phys. 125, 833–837 (2011)

    Article  CAS  Google Scholar 

  72. Chou, J.C., Chen, C.W.: Long-term monitor of seawater by using TiO2:ru sensing electrode for hard clam cultivation. World Acad. Sci. Eng. Technol. 53, 349–353 (2009)

    Google Scholar 

  73. Jan, S.S., Chiang, J.L., Chen, Y.C., Chou, J.C., Cheng, C.C.: Characteristics of the hydrogen ion-sensitive field effect transistors with sol–gel-derived lead titanate gate. Anal. Chim. Acta. 469, 205–216 (2002)

    Article  CAS  Google Scholar 

  74. Chen, J.C., Chou, J.C., Sun, T.P., Hsiung, S.K.: Portable urea biosensor based on the extended-gate field effect transistor. Sens. Actuat. B 91, 180–186 (2003)

    Article  Google Scholar 

  75. Yin, L.T., Lin, Y.T., Leu, Y.C., Hu, C.Y.: Enzyme immobilization on nitrocellulose film for pH-EGFET type biosensors. Sens. Actuat. B 148, 207–213 (2010)

    Article  Google Scholar 

  76. Yin, L.T., Chou, J.C., Chung, W.Y., Sun, T.P., Hsiung, K.P., Hsiung, S.K.: Glucose ENFET doped with MnO2 powder. Sens. Actuat. B 76, 187–192 (2001)

    Article  Google Scholar 

  77. Ishige, Y., Shimoda, M., Kamahori, M.: Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode. Biosens. Bioelectron. 24, 1096–1102 (2009)

    Article  CAS  Google Scholar 

  78. Ishige, Y., Shimoda, M., Kamahori, M.: Immobilization of DNA Probes onto gold surface and its application to fully electric detection of DNA hybridization using field effect transistor sensor. Jpn. J. Appl. Phys. 45, 3776–3783 (2006)

    Article  CAS  Google Scholar 

  79. Kim, D.S., Jeong, Y.T., Park, H.J., Shin, J.K., Choi, P., Lee, J.H., Lim, G.: An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens. Bioelectron. 20, 69–74 (2004)

    Article  CAS  Google Scholar 

  80. Chi, L.L., Yin, L.T., Chou, J.C., Chung, W.Y., Sun, T.P., Hsiung, K.P., Hsiung, S.K.: Study on separative structure of EnFET to detect acethylcoline. Sens. Actuat. B 71, 68–72 (2000)

    Article  Google Scholar 

  81. Chi, L.L., Chou, J.C., Chung, W.Y., Sun, T.P., Hsiung, S.K.: Study on extended gate field effect transistor with tin oxide sensing membrane. Mat. Chem. Phys. 63, 19–23 (2000)

    Article  CAS  Google Scholar 

  82. Castellarnau, M., Zine, N., Bausells, J., Madrid, C., Juárez, A., Samitier, J., Errachid, A.: ISFET-based biosensor to monitor sugar metabolism in bacteria. Mat. Sci. Eng. C 28, 680–685 (2008)

    Article  CAS  Google Scholar 

  83. Chou, J.C., Wang, Y.F.: Temperature characteristics of a-Si:H gate ISFET. Mater. Chem. Phys. 70, 107–111 (2001)

    Article  CAS  Google Scholar 

  84. Chou, J.C., Wang, Y.F.: Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method. Sens. Actuat. B 86, 58–62 (2002)

    Article  Google Scholar 

  85. Nguyen, T.N.T., Seol, Y.G., Lee, N.E.: Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing. Organic Electronics 12, 1815–1821 (2011)

    Google Scholar 

  86. Yin, L.T., Chou, J.C., Chung, W.Y., Sun, T.P., Hsiung, S.K.: Separate structure extendet gate H+-ion sensitive field effect transistor on a glass substrate. Sens. Actuat. B 71, 106–111 (2000)

    Article  Google Scholar 

  87. Yin, L.T., Chou, J.C., Chung, W.Y., Sun, T.P., Hsiung, S.K.: Study of indium tin oxide thin film for separative extended gate ISFET. Mat. Chem. Phys. 70, 12–16 (2001)

    Article  CAS  Google Scholar 

  88. Vieira, N.C.S., Fernandes, E.G.R., Faceto, A.D., Zucolotto, V., Guimarães, F.E.G.: Nanostructurated polyaniline thin films as pH sensing membranes in FET-based devices. Sens. Actuat. B 160, 312–317 (2011)

    Article  CAS  Google Scholar 

  89. Daniel, M.C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  CAS  Google Scholar 

  90. Cui, T.H., Hua, F., Lvov, Y.: FET fabricated by layer-by-layer nanoassembly. IEEE Trans. Elec. Dev. 51, 503–506 (2004)

    Article  CAS  Google Scholar 

  91. Cui, T.H., Liu, Y., Zhu, M.: Field-effect transistors with layer-by-layer self-assembled nanoparticle thin films as channel and gate dielectric. Appl. Phys. Lett. 87, 183105–183105-3 (2005)

    Google Scholar 

  92. Xu, J.J., Zhao, W., Luo, X.L., Chen, H.Y.: A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chem. Comm. 792–794 (2005)

    Google Scholar 

  93. Javey, A., Nam, S., Friedman, R.S., Yan, H., Lieber, C.M.: Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007)

    Article  CAS  Google Scholar 

  94. Siqueira, Jr., J.R., Abouzar, M.H., Backer, M., Zucolotto, V., Poghossian, A., Oliveira, Jr., O.N., Schoning, M.J.: Carbon nanotubes in nanostructured films: Potential application as amperometric and potentiometric field-effect (bio-)chemical sensors. Phys. Stat. Sol. A 206, 462–467 (2009)

    Google Scholar 

  95. Siqueira, Jr., J.R., Abouzar, M.H., Poghossian, A., Zucolotto, V., Oliveira, Jr., O.N., Schöning, M.J.: Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosens. Bioelectron. 25, 497–501 (2009)

    Google Scholar 

  96. Siqueira, Jr., J.R., Werner, C.F., Backer, M., Poghossian, A., Zucolotto, V., Oliveira, Jr., O.N., Schoning, M.J.: Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors. J. Phys. Chem. C 113, 14765–14770 (2009)

    Google Scholar 

  97. Siqueira, Jr., J. R.; Bäcker, M.; Poghossian, A.; Zucolotto, V.; Oliveira, Jr., O. N.; Schöning, M. J.: Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices. Physica Status Solidi A-Applications and Materials Science 207, 781–786 (2010)

    Google Scholar 

  98. Siqueira, Jr., J. R.; Maki, R. M.; Paulovich, F. V.; Werner, C. F.; Poghossian, A.; De Oliveira, M. C. F.; Zucolotto, V.; Oliveira, Jr., O. N.; Schöning, M. J.: Use of information visualization methods eliminating cross talk in multiple sensing units investigated for a light-addressable potentiometric sensor. Anal. Chem. 82, 61–65 (2010)

    Google Scholar 

  99. Abouzar, M. H., Siqueira, Jr., J. R., Poghossian, A., Oliveira, Jr., O. N., Moritz, W., Schöning, M.J.: Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte-enzyme multilayer: new strategy for enhanced field-effect biosensing. Phys. Stat. Sol. A 207, 884–890 (2010)

    Google Scholar 

  100. Abouzar, M.H., Poghossian, A., Pedraza, A.M., Gandhi, D., Ingebrandt, S., Moritz, W., Schöning, W.J.: An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing. Biosens. Bioelectron. 26, 3023–3028 (2011)

    Article  CAS  Google Scholar 

  101. Gun, J., Schöning, M.J., Abouzar, M.H., Poghossian, A., Katz, E.: Field-effect nanoparticle-based glucose sensor on a chip: amplification effect of coimmobilized redox species. Electroanal 20, 1748–1753 (2008)

    Article  CAS  Google Scholar 

  102. Gun, J., Gutkin, V., Lev, O., Boyen, H.G., Saitner, M., Wagner, P., D’Olieslaeger, M., Abouzar, M.H., Poghossian, A., Schöning, M.J.: Tracing gold nanoparticle charge by electrolyte-insulator-semiconductor devices. J. Phys. Chem. C 115, 4439–4445 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPq, FAPEMIG, FAPESP, and Rede nBioNet (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Roberto Siqueira Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siqueira, J.R., Fernandes, E.G.R., de Oliveira, O.N., Zucolotto, V. (2013). Biosensors Based on Field-Effect Devices. In: Crespilho, F. (eds) Nanobioelectrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29250-7_4

Download citation

Publish with us

Policies and ethics